

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

For

Bachelor of Technology
Computer Science and Engineering (Internet of Things)
Second Year

(Effective from the Session: 2024-25)

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology

Computer Science and Engineering (Internet of Things)

Evaluation Scheme

SEMESTER-III

	Subject	G 1: 4	Types of		Per	iods	Evaluation Schemes					End		G 11.
S.No.	Codes	Subject	Subjects							Semester		Total	Credit	
				L	T	P	CT	TA	Total	PS	TE	PE		
		3 WEEK	S COMPULSORY	IND	UCT	ION P	ROGRA	M						
1	BCSE0306	Discrete Structures	Mandatory	3	1	0	30	20	50		100		150	4
2	BCSIOT0301	Sensor and Its Applications	Mandatory	3	1	0	30	20	50		100		150	4
3	BCSE0301	Data Structures and Algorithm- I	Mandatory	3	0	0	30	20	50		100		150	3
4	BCSIOT0302	Logic Design and Microcontroller	Mandatory	3	0	0	30	20	50		100		150	3
5	BCSIOT0303 Introduction to IoT		Mandatory	3	0	0	30	20	50		100		150	3
6	6 BCSE0352 Object Oriented Techniques		Mandatory	0	0	6				50		100	150	3
7	BCSIOT0352	Logic Design and Microcontroller Lab	Mandatory	0	0	2				25		25	50	1
8	BCSIOT0353	IoT Lab using Arduino and Node MCU Platform	Mandatory	0	0	4				50		50	100	2
9	BCSE0359	Internship Assessment-I	Mandatory	0	0	2				50			50	1
10		Environmental Science/ Artificial Intelligence and Cyber Ethics	Compulsory Audit	2	0	0	30	20	50		50		100	NA
		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
	TOTAL												1100	24

* List of MOOCs Based Recommended Courses for Second year (Semester-III) B. Tech Students

S.No	Subject Code	Course Name	University/Industry Partner Name	No of Hours	Credits
1	BMC0008	Object Oriented Programming Using Python	Infosys Wingspan (Infosys Springboard)	46h 13m	3.5
2	BMC0024	Internet of Things 101	Infosys Wingspan (Infosys Springboard)	7h	0.5

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-II and will be assessed during semester-III
- ➤ Compulsory Audit (CA) Courses (Non-Credit BNC0301/BNC0302)
 - All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - > The total and obtained marks are not added in the grand total.

Abbreviation Used:

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology

Computer Science and Engineering (Internet of Things) Evaluation Scheme

SEMESTER-IV

S. No	Subject	Subject	Types of Subjects]	Perio	ds	Eva	luatio	n Sche	mes	Semo	End ester		
	Code	Subject	Subjects	L	T	P	CT	TA	Total	PS	TE	PE	Total	Credit
1	BAS0402	Engineering Mathematics IV	Mandatory	3	1	0	30	20	50		100		150	4
2	BASL0401	Technical Communication	Mandatory	2	1	0	30	20	50		50		100	3
3	BCSE0401	Data Structures and Algorithm-II	Mandatory	3	0	0	30	20	50		100		150	3
4	BCSE0403	Operating Systems	Mandatory	2	0	0	30	20	50		50		100	2
5	BCSIOT0401	Mobile Application Development	Mandatory	3	0	0	30	20	50		100		150	3
6	BCSE0451	Data Structures and Algorithm-II Lab	Mandatory	0	0	4				50		50	100	2
7	BCSE0453	Operating Systems Lab	Mandatory	0	0	4				50		50	100	2
8	BCSE0452	Database Management Systems	Mandatory	0	0	6				50		100	150	3
9	BASL0451	Technical Communication Lab	Mandatory	0	0	2				25		25	50	1
10	BCSE0459	Mini Project	Mandatory	0	0	2				50			50	1
11	BNC0401/ BNC0402	Artificial Intelligence and Cyber Ethics/ Environmental Science	Compulsory Audit	2	0	0	30	20	50		50		100	NA
		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
		TOTAL											1100	24

* List of MOOCs Based Recommended Courses for Second year (Semester-IV) B. Tech Students

S. No	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	BMC0025	IOT Automation with ESP8266 with Projects	Infosys Wingspan (Infosys Springboard)	7h 21 m	0.5
2	BMC0022	Mobile Apps Development - Advanced Applications	Infosys Wingspan (Infosys Springboard)	14h 23m	1

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-IV and will be assessed during Semester-V
- ➤ Compulsory Audit (CA) Courses (Non-Credit BNC0401/BNC0402)
 - All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - The Total and obtained marks are not added in the Grand Total.

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE: Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

- 1. For 6 to 12 Hours = 0.5 Credit
- 2. For 13 to 18 = 1 Credit
- 3. For 19 to 24 = 1.5 Credit
- 4. For 25 to 30 = 2 Credit
- 5. For 31 to 35 = 2.5 Credit
- 6. For 36 to 41 = 3 Credit
- 7. For 42 to 47 = 3.5 Credit
- 8. For 48 and above =4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shallprovide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

- i. If he / she secures 7.50 as above CGPA.
- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits

(An Autonomous Institute)
School of Computer Science in Emerging Technologies

Subject Name: Discrete Structures L-T-P [3-1-0]

Subject Code: BCSE0306 Applicable in Department: All Branches

Pre-requisite of Subject: Some basic knowledge of algebra and logic is usually sufficient to begin studying discrete mathematics for computer science. Familiarity with sets, functions, and basic Boolean algebra is also helpful.

Course Objective: The objective of discrete structure is to enable students to formulate problems precisely, solve the problems, apply formal proofs techniques and hence enhance one's logical thinking and problem-solving skills.

Course Outcomes (CO)

Course outco	ourse outcome: After completion of this course students will be able to:						
CO 1	Apply the basic principles of sets, relations & functions and mathematical induction in computer science & engineering related problems.	К3					
CO2	Describe the algebraic structures and it's properties to solve complex problems.	K2					
CO3	Describe lattices and it's type to simplify digital circuits.	K2					
CO4	Infer the validity of statements and construct proofs using predicate logic formulas.	K4					
CO5	Design and use non-linear data structure like graphs to solve real world problems.	K4					

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical / Assignm ent/ Lab Nos	CO Mapping	
1 Set Theory	Module 1.1:	Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality, Venn Diagrams, proofs of some general identities on sets, Applications of set Theory	Notes, PPT,	8 L	NA	CO1	
& Relations	Module 1.2: Relations	Relation: Definition, types of relation, composition of relations, Equivalence relation, Partial ordering	Lecture Notes, PPT,				

		relation, Applications of Relations	Online Videos & R2			
2 Algebraic Structures	Module 2.1: Algebraic Structures	Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, Properties of groups, Subgroup, cyclic group, Permutation group, Cosets, Normal subgroup, Homomorphism and isomorphism of Groups, Applications of Algebraic Structure	Notes, PPT, Online	8 L	NA	CO2
. 00000,	Module 3.1: Posets, Hasse Diagram and Lattices:	Introduction, ordered set, Hasse diagrams of partially ordered set, isomorphic ordered set, well ordered set, properties of lattices, types of lattices, Applications of Lattice	Notes, PPT,	8 L	NA	CO3
4	Module 4.1: Propositional Logic	Propositions and compound Propositions, Basic logical operations, truth tables, tautologies, Contradictions, CNF, DNF Algebra of Proposition, logical implications, logical equivalence, predicates and quantifiers, Rules of Inference, Application of Propositional Logics.	Lecture Notes, PPT, Online Videos & R1	8 L	NA	CO4
Propositional & Predicate Logic	Module 4.2: Predicate Logic	First order predicate, Well-formed formula of Predicate, Quantifiers, Inference Theory of Predicate Logic, Application of Predicate Logics.	Lecture Notes, PPT, Online Videos & R2			
	Module 5.1: Graphs	Definition and terminology, Representation of Graphs, Paths connectivity, Walks, Paths, Cycles, Bipartite, Regular, Planar and connected graphs, Components, Euler graphs, Euler's theorem, Hamiltonian path and circuits, Graph coloring, chromatic number, isomorphism and homomorphism of graphs. Application of Graphs	Lecture Notes, PPT, Online Videos & R2	8 L	NA	CO5
		Total			40 Ho	urs
		Textbooks				
Sr. No.		Book Detai	ls			
1.	Swapanm Kumar Sarkar, "A Textbook of Discrete Mathematics", S. Chand Publication, 9 th Edition, 2021					

2.	T Veerarajan, "Discrete Mathematics, with Graph Theory and Combinatorics" TMH Publication, 4 th Edition, 2021						
	Reference Books						
Sr. No.	Book Details						
1.	B. Kolman, R.C. Busby, and S.C. Ross, Discrete Mathematical Structures, Prentice Hall, 6th Edition, 2020.						
2.	Liptschutz, Seymour, "Discrete Mathematics", TMH, 4th Edition, 2021.						
3.	. Kenneth H. Rosen, Kamala Krithivasan, "Discrete Mathematics and its Applications", TMH, 8th Edition, 2021						
	Links						
Unit 1	https://www.youtube.com/watch?v=hGtOLG3Ssjl&list=PLwdnzlV3ogoVxVxCTlI45pDVM1aoYoMHf&index=9 https://www.youtube.com/watch?v=rGcTcGFx9_s&list=PLwdnzlV3ogoVxVxCTlI45pDVM1aoYoMHf&index=10 https://www.youtube.com/watch?v= BIKq9Xo 5A&list=PL0862D1A947252D20&index=13						
Unit 2	https://www.youtube.com/watch?v=dQ4wU0k7JKI&list=PL0862D1A947252D20&index=35 https://www.youtube.com/watch?v=CjmWE-f3vEc&list=PLwdnzlV3ogoVxVxCTlI45pDVM1aoYoMHf&index=41						
Unit 3	https://www.youtube.com/watch?v=qPtGlrb_sXg&list=PL0862D1A947252D20&index=40						
Unit 4	https://www.youtube.com/watch?v=xlUFkMKSB3Y&list=PL0862D1A947252D20&index=1 https://www.youtube.com/watch?v=DmCltf8ypks&list=PL0862D1A947252D20&index=3						
Unit 5	https://www.youtube.com/watch?v=E40r8DWgG40&list=PLEAYkSg4uSQ2fXcfrTGZdPuTmv98bnFY5						

(An Autonomous Institute)
School of Computer Science in Emerging Technologies

Subject Name: Sensors and its Applications	L-T-P [3-1-0]
--	---------------

Subject Code: BCSIOT0301 Applicable in Department: IoT

Pre-requisite of Subject: Basic IoT and Electronics

Course Objective: This course provides an understanding of sensors for measuring displacement, force, pressure, temperature, position, acceleration, vibration, flow, and level. It covers the use of virtual instrumentation in automation, data acquisition methods, and the application of smart and advanced sensors in industrial automation. Identification of appropriate data acquisition methods. The applications of smart and advanced sensors for industrial automation.

Course Outcomes (CO)

Course outco	me: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Use the sensors for measurement of displacement, force, and pressure.	К3
CO2	Identify the commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow, and level.	К2
CO3	Use virtual instrumentation in automation industries.	К3
CO4	Identify appropriate data acquisition methods for smart systems.	K2
CO5	Implement various real time products using smart sensors.	К3

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Assignment / Lab Nos	CO Mapping
1	Sensors & Transducers	Sensors & Transducers: Definition, Classification of sensors, Measurement of displacement using Potentiometer,	PPT, Test,	8 L	Assignment	CO1

	1	IVDT/Linear Variable Differ of t	0			1
		LVDT(Linear Variable Differential	Quiz			
		Transformer) & Optical Encoder,				
		Measurement of force using strain gauge,				
		Measurement of pressure using LVDT				
		based diaphragm & piezoelectric sensor,				
		Introduction to sensors most widely used				
		in computer and mobile phones:				
		Temperature, Pressure, Humidity, Toxic				
		Gas, pH sensor, sound sensor, magnetic				
		field sensor, Motion (Infra-red) sensor,				
		barometer, and Gyroscope.				
		Measurement of temperature using				
		Thermistors, Thermocouple & (Resistance				
		Temperature Detector) RTD, Concept of	PPT, Test,			
		thermal imaging, Measurement of	PPI, Test,			
2	Measurement of	position using Hall effect sensors,	Quiz	8 L	Assignment	CO2
2	physical parameters	Proximity sensors: Inductive & Capacitive,	Quiz	O L	Assignment	CO2
		Use of proximity sensor as accelerometer				
		and vibration sensor, Working Principles of				
		Flow Sensors: Ultrasonic & Laser, Level				
		Sensors: Ultrasonic & Capacitive				
		Virtual Instrumentation: Graphical				
		programming techniques, Data types,	DDT Toot			
		Advantage of Virtual Instrumentation	PPT, Test,			
2	Vistual Instrumentation	techniques, Concept of WHILE & FOR	0	0.1	A a a i a un a a un t	603
3	Virtual Instrumentation	loops, Arrays, Clusters & graphs,	Quiz	8 L	Assignment	CO3
		Structures: Case, Sequence & Formula				
		nodes, Need of software based				
		instruments for industrial automation.				
		Data Acquisition Methods: Basic block				
		diagram, Analog and Digital IO, Counters,	PPT, Test,			
	Data Ass. 1-111-	Timers, Types of ADC: successive				
4	Data Acquisition	approximation and sigma-delta, Types of	Quiz	8 L	Assignment	CO4
	Methods	DAC: Weighted Resistor and R-2RLadder				
		type, Use of Data Sockets for Networked				
		Communication.				
		Intelligent Sensors: General Structure of	PPT, Test,			
_	Ad 10	smart sensors & its components,	, ,	0.1		665
5	Advanced Sensors	Characteristic of smart sensors: Self	Quiz	8 L	Assignment	CO5
		calibration, Self-testing & self-				

	communicating, Selection of Sensors for Practical Applications, Application of smart sensors: Automatic robot control & automobile engine control.				
	Use cases of Smart Sensors: iroute, Marine Traffic Tracker				
	Total	40 Hours			
	Textbooks				
Sr No	Book Details				
1	Sabrie Soloman," Sensors Handbook", Second Edition Jan 2010.				
2	A.K. Sawhney," Sensors and Instrumentation" Dhanpat Rai & Co. 2014				
3	Michael Miller, "The Internet of Things" Pearson. 1st Edition March 2015				
	Reference Books				
Sr No	Book Details				
1	Mr. M.sivasubramanian ," Introduction To Sensors And Transducers" Xpress Publicati	Mr. M.sivasubramanian ," Introduction To Sensors And Transducers" Xpress Publications, 2021.			
2	Clarence W De Silva," Sensor Systems Fundamentals And Applications",2016.				
	Links				
Unit 1	https://www.youtube.com/watch?v=zxYeJW9v6OU&list=PLwymdQ84KI-w5DwDzqO	4hWsB2Jc4 eBy			
Unit 2	https://www.youtube.com/watch?v=EQ4D9JaQ				
Unit 3	https://www.youtube.com/watch?v=ZCqRCmGJxB4				
Unit 4	https://www.youtube.com/watch?v=HicZcgdGxZY&list=PLwjK_iyK4LLCnW-df53d-6yYrGb9zZc				
Unit 5	https://www.youtube.com/watch?v=vlwemaauvwM				

(An Autonomous Institute)
School of Computer Science in Emerging Technologies

Subject Name: Data Structures and Algorithms-I L-T-P [3-0-0]

Subject Code: BCSE0301 Applicable in Department: CSE/IT/CS/AI/AIML/IOT/ DS/CYS

Pre-requisite of Subject: C, Python

Course Objective: The objective of the course is to learn the basic concepts of algorithm analysis, along with implementation of linear data structures.

Course Outcomes (CO)

Course o	atcome: After completion of this course students will be able to:	Knowledge Level(KL)
CO 1	Understand the concept of algorithm analysis and its importance for problem solving.	K2
CO2	Implementation of Arrays for searching, sorting and hashing to foster critical thinking.	К3
CO3	Compare and contrast linked list with arrays and implementation of linked list with its applications.	K4
CO4	Understand static and dynamic implementation of stacks, while mastering principle of recursion for effective problem-solving.	К3
CO5	Implementation and analysis of divide & conquer algorithms and greedy approach for efficient problem-solving across diverse contexts.	К3

Unit No	Module Name	Topic covered	00,	Lecture Required (L+P)	Accionment/	CO Mapping
1 Introduction to Data Structure and Algorithms	Module 1.1: Foundation of Algorithms Analysis and Design	Algorithms, Analyzing Algorithms, Complexity of Algorithms, Amortized Analysis, Growth of Functions, Methods of solving Recurrences, Performance Measurements Time and Space Complexity of an algorithm, Asymptotic notations (Big Oh, Big Theta and Big Omega), Abstract Data Types (ADT).	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving, Collaborative Learning, competitive coding Projects, Assessments. Lectures, Problem Solving, Collaborative Learning, Assessments		Program to compare the time complexities of various algorithms by plotting the graph	CO1

		1	T		<u> </u>	
2 Design and Analysis of Algorithms: Arrays, searching and sorting, Hashing	Module 1.2: Fundamentals of D.S. Module 2.1: Arrays Module 2.2: Searching and Sorting Module 2.3: Hashing	Data types: Primitive and non-primitive, Introduction to Data structure, Types of Data Structures- Linear & Non-Linear Data Structures. Arrays: Definition, Single and Multidimensional Arrays; Representation of Arrays: Row Major Order, and Column Major Order, Derivation of Index Formulae for 1-D,2-D,3-D and n-D Array Application of Arrays: Sparse Matrices and their Representations. Searching algorithm with analysis: Linear search, Binary search. Sorting algorithm with analysis: Bubble sort, Insertion sort, Selection sort, Shell Sort, Sorting in Linear Time- Counting Sort. Hashing: The symbol table, Hashing Functions, Collision-Resolution Techniques, hashing for		8L+12P	Implementation of Arrays, Row Major Order, and Column Major Order, Representation of sparse matrix, Linear search, Binary search.	CO2
2	Madula 2.4. Linkad List	direct files.	Last one Carlo		0	
3 Design and Analysis of Algorithms: Linked lists Data Structure	Module 3.1: Linked List	Types of linked list: Singly Linked List, Doubly Linked List, Circular Linked List Polynomial Representation and	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving, Collaborative Learning, competitive coding, Projects, Assessments.	8L+12P	Operations on a Linked List: Insertion, Deletion, Traversal, Reversal, Searching	CO3
4 Design and Analysis of Algorithms based: Stacks Data Structure and	Module 4.1: Stacks Module 4.2: Recursion	Primitive Stack operations: Push & Pop, Array and Linked List Implementation of Stack, Application of stack: Infix, Prefix, Postfix Expressions and their mutual conversion, Evaluation of postfix expression.	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving, Collaborative Learning, Projects, Assessments.	8L+12P	Operations on stacks and question. Recursion Application	CO4

Sr. No.		Book	c Details			
		Reference				
3	Lipschutz, "Data Structure	s" Schaum's Outline Series, Tata McG	raw-hill Education (India) Pvt. Ltd, 2nd	d Edition, 2017	
2	Horowitz and Sahani, "Fur	ndamentals of Data Structures", Comp	uter Science Press, 1 st E	dition, 1993.		
1	Michael T. Goodrich, Robe	erto Tamassia, "Data Structures and A	lgorithms in Python: An	Indian Adapta	ation", 1st Edition	, 2021.
Sr. No.		Book	c Details			
		Text	tbooks			
	Total No. of Lectur	e + Practical Labs	(4	0L+48P) = 8	88 Hours	
Analysis of Algorithms: Queues Data Structure		Such as Activity Selection, Task Scheduling, Fractional Knapsack Problem.	Collaborative Learning, Projects, Assessments.			
5 Design and	Module 5.1: Divide and Conquer and Greedy Methods	Divide and Conquer concepts with Examples Such as Quick sort, Merge sort, Convex Hull. Greedy Methods with Examples	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving,	8L+6P	Divide and conquer methods and greedy methods	CO5
	Module 4.3: Queue	Problem solving using iteration and recursion with examples such as binary search, Fibonacci series, and Tower of Hanoi, Trade-offs between iteration and recursion. Merge sort and Quick sort algorithms with analysis. Array and linked List implementation of queues, Operations on Queue: Create, Insert, Delete, Full and Empty, Circular queues, Dequeue and Priority Queue algorithms with analysis				
Recursion	Madula 4.2.	Principles of recursion, Tail recursion, Removal of recursion,				

1	Reema Thareja, "Data Structure Using C", Oxford University Press, 2 nd Edition, 2014.			
2	AK Sharma, "Data Structure Using C", Pearson Education India, 2 nd Edition,2011.			
3	P. S. Deshpandey, "C and Data structure", Wiley Dreamtech Publication, 1st Edition, 2004.			
	Links			
Unit 1	https://youtu.be/u5AXxR4GnRY			
Unit 2	https://www.youtube.com/watch?v=LQx9E2p5c&pp=ygUMYXJyYXlzIG5wdGVs			
Unit 3	https://www.youtube.com/watch?v=K7VIKIUdo20&pp=ygUPbGluayBsaXN0IG5wdGVs			
Unit 4	https://www.youtube.com/watch?v=g1USSZVWDsY&list=PLB3CD0BBB95C1BF09&index=2&pp=iAQB https://www.youtube.com/watch?v=THMyk2_p530&pp=ygUccXVldWUgZGF0YSBzdHJ1Y3R1cmUglCBucHRlbA%3D%3D			
Unit 5	https://www.youtube.com/watch?v= VV9v41Flq0&pp=ygUZZGl2aWRlIGFuZCBjb25xdWVyICBucHRlbA%3D%3D https://www.youtube.com/watch?v=ARvQcqJ -NY&list=PLfFeAJ-vQopt S5XlayyvDFL mi2pGJE3			

	Lab Experiments	
Course Ob	jective: Learn to implement linear data structures.	
	Course Outcomes (CO)	
Course ou	tcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Implementing Single and Multi-dimensional array with their applications like searching and Sorting techniques.	К3
CO2	Implement Link list, Stack and Queues with their applications	K3
CO3	Implementation and analysis of various operation like searching sorting and hashing.	K4
	List of Practicals	
Sr. No	Program Title	CO Mapping
1	Construct a program to compare the time complexities of selection, bubble and insertion sort by plotting the graph	CO1

2	Construct a program to compare the time complexities of various algorithms by varying size "n".	CO1
3	Construct a Code to find the maximum element in an array.	CO2
4	Construct a Code to calculate the sum of all elements in an array.	CO2
5	Construct a Code to reverse the elements of an array.	CO2
6	Construct a Code to check if an array is sorted in ascending order.	CO2
7	Construct a Code to count the occurrence of a specific element in an array.	CO2
8	Construct a Code creation and traversal of 2D Array in row major and column major order.	CO2
9	Construct a code to print the transpose of a given matrix using function	CO2
10	Program to find if a given matrix is Sparse or Not and print Sparse Matrix	CO2
11	Construct a code to represent a sparse matrix in triplet form.	CO2
12	Construct a code to Implement Linear Search	CO2
13	Construct a code to implement Binary Search	CO2
14	Construct a program to Implement Selection Sort	CO2
15	Construct a program to Implement Bubble Sort	CO2
16	Construct a program to Implement Insertion Sort	CO2
17	Construct a program to Implement Shell Sort	CO2
18	Construct a program to Implement Counting Sort	CO2
19	Create a single linked list and perform basic operations (insertion, deletion, traversal).	CO3
20	Create a double linked list and perform basic operations (insertion, deletion, traversal).	CO3
21	Create a circular linked list and perform basic operations (insertion, deletion, traversal).	CO3
22	Create a circular double linked list and perform basic operations (insertion, deletion, traversal).	CO3
23	Reverse a single linked list.	CO3
24	Check if a linked list is palindrome.	CO3
25	Reverse a double linked list.	CO3
26	Find the middle element of a single linked list.	CO3

27	Find the middle element of a double linked list.	CO3
28	Merge two sorted single linked lists.	CO3
29	Detect and remove a loop in a circular linked list.	CO3
30	Construct a code to add two polynomials using linked list	CO3
31	Construct a program to Implement stack using array	CO3
32	Construct a program to Implement stack using a linked list	CO4
33	Construct a code to Infix to postfix conversion using a stack	CO4
34	Construct a code for Balanced parentheses checker using a stack	CO4
35	Implement Reverse a string using a stack.	CO4
36	Implement Binary Search using Recursion.	CO4
37	Construct a python program to print Fibonacci Series using Recursion.	CO4
38	Construct a code to implement Tower of Hanoi.	CO5
39	Construct a program to Implement queue using array.	CO5
40	Construct a code for Implementing a circular queue.	CO5
41	Construct a program to Implement queue using stack	CO5
42	Construct a program to Implement priority queue	CO5
43	Construct a program to Implement double ended queue	CO5
44	Construct a program to Implement Merge Sort with recursion	CO5
45	Construct a program to Implement Quick Sort with recursion	CO5
46	Construct a program to Implement Merge Sort using iteration	CO5
47	Construct a program to Implement Quick Sort using iteration	CO5
48	Construct a program to Implement fractional knapsack	CO5
49	Construct a program to Implement Activity selection problem	CO5
50	Construct a program to Implement Job scheduling problem	CO5
*Competi	tive coding list will be shared with the students.	•

(An Autonomous Institute)
School of Computer Science in Emerging Technologies

Subject Name: Logic Design and Microcontroller L-T-P [3-0-0]

Subject Code: BCSIOT0302 Applicable in Department: IoT

Pre-requisite of Subject: Basic Electronics

Course Objective: Students will learn to design combinational and sequential circuits, understand logic systems, and optimize logic circuits. They will study the architecture of the 8085 Microprocessor and ATMEGA 328P microcontroller, including assembly-level programming for both.

Course Outcomes (CO)

Course ou	ourse outcome: After completion of this course students will be able to:		
CO 1	Apply optimization techniques to implement logic functions using combinational logic.	K3	
CO2	Understand the basic building blocks of Sequential logic circuits.	К2	
CO3	Use the knowledge of 8085 Microprocessor for writing assembly-level programming.	К3	
CO4	Describe the fundamentals of ATmega 328P and embedded systems.	K2	
CO5	Analyse ATmega 328P and embedded systems to write assembly-level programming.	К4	

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
		Number systems, Basic Theorems of	White			
	Number System and Combinational Logic	Boolean Algebra, Digital Logic Gates, EX-OR	Board	8 L	Experiment No	
		gates, Universal Gates,	Smart			
1 1		Prime Implicants and Essential Prime	Board			CO1
		Implicants, Karnaugh Map Method - Up to	Lab		1-4	
		Five Variables, Don't Care Map Entries.	Sessions		ssions	
		Combinational Logic Circuits: Adders, BCD				

		USART, Pertinent Register Descriptions Total				
1	1	LICART D D		I	1	I
		Serial communication: Introduction, UART,	Sessions			
		Descriptions, Instructions.	Lab			
.	Ports and Assembly Instructions	Interrupt Processing: ISR, Pertinent Register	Board		14-20	603
5	ATMEGA 328P Microcontroller	Register Descriptions.	Smart	6 L	Experiment No	CO5
		Analog input ports: Analog Comparator,	Board			
		capture, Timer Register Descriptions	White			
		Timer Ports: Introduction, PWM, Input				
		Assembly Instructions.	Sessions			
		Resistor, PORT Register Descriptions	Lab			
4	Microcontroller	GPIO: Output pin-muxing, Internal Pull up	Board	6 L	11-13	CO4
	Introduction to ATMEGA 328P	328P register summary	Smart	6.	Experiment No	664
		Microcontroller, AVR CUP Core, ATmega				
		The architecture of ATmega 328P	White			
		interrupts.				
		of 8085 microprocessor: Classification of	Sessions			
		language programming of 8085, Interrupts	Lab			
.	Introduction to 8085 Microprocessor	instructions, addressing, Modes, Assembly	l Board l		8-10	o CO3
3		8085 Microprocessor, Classification of	Smart	8 L	Experiment No	
		Control signal generation, Instruction set of	Board			
		Address / Data Bus multiplexing and demultiplexing. Status and	White			
		The architecture of 8085 Microprocessor,				
		Counters.				
		another. Introduction to Shift Registers &	Sessions			
		Conversion from one type of Flip-Flop to	Lab			
2	Sequential Logic Circuits	Characteristics Table of all Flip Flops,	Board	8 L	6-7	CO2
		Slave, D and T Type Flip Flops, Excitation and	Smart		Experiment No	000
		like SR Latch, Flip Flops: SR, JK, JK Master	Board			
		Basic Building Blocks of Sequential circuits	White			
<u> </u>		Decoders and Code converters.				
		Multiplexers, Demultiplexers, Encoders,				
		Adder, Subtractors, Comparators,				

	Textbooks				
Sr No	Book Details				
1	Morris Mano , "Digital Design, 3rd Edition" Prentice Hall India. 6th Edition 2018				
2	Ramesh Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram International Publication (India) Pvt. Ltd, 6th Edition 2014				
3 David Russel," Introduction to Embedded Systems Using ANSI C and the Arduino Development Environment, Springer, 202					
	Reference Books				
Sr No	Book Details				
1	R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.				
2	K M Bhurchandi, A K Ray, "Advanced Microprocessor And Peripherals", Tata McGraw Hill, 3rd edition, 2017.				
3	Muhammad Ali Mazidi, Sepehr Naimi, Sarmad Naimi, "The AVR microcontroller and embedded systems: using Assembly and C",				
	MicroDigitalEd; First Edition (August 4, 2017)				
	Links				
Unit 1	nttps://onlinecourses.swayam2.ac.in/ini24_ma02/preview_				
Unit 2	nttps://onlinecourses.swayam2.ac.in/ini24_ma02/preview_				
Unit 3	https://onlinecourses.swayam2.ac.in/ini24_ma02/preview				

(An Autonomous Institute)
School of Computer Science in Emerging Technologies

Plaam's

Subject Name: Introduction to IoT L-T-P [3-0-0]

Subject Code: BCSIOT0303 Applicable in Department: IoT

Pre-requisite of Subject: Basic Electronics and C programming

Course Objective: This course emphasizes the study of the introduction of IoT technology, Components, architecture, network communications and applications protocols. The course also aims at understanding various hardware for IoT, programming concepts using Arduino and Raspberry Pi, and studying about applications of IoT.

Course Outcomes (CO)

Course outco	ome: After completion of this course students will be able to:	Knowledge Level(KL)
CO 1	Define the vision, definition, conceptual framework, and architecture of IoT and M2M Communication.	K1
CO2	Use Sensors, actuators, and microcontrollers used in IoT implementation.	К3
CO3	Execute and verify programs with the help of Arduino, Node MCU, and Raspberry Pi.	К3
CO4	Integrate the hardware with network and basic knowledge about network protocols and data dissemination	K4
CO5	Analyze applications like Smart metering systems, Smart streetlights, home automation, and smart city applications.	К4

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment / Lab Nos	CO Mapping	
1	Introduction of IoT and Design Principles	Introduction to IoT concepts and principles, Overview of Conceptual Framework and Architectural Framework of IoT, M2M Communication, IoT/M2M systems layers, and design standardization, Data enrichment	White Board Smart Board Lab Sessions	I TOF+Ph	Experiment 1 to 3	CO1	

		Total		(36	6L+ 48P) = 84 Ho	ours
5	IoT Applications	Smart metering, e-health, Smart city automation, Automotive applications, home automation, communicating data with H/W units, mobiles, and tablets, Designing smart streetlights in smart cities, and Ideation of Mini Project.	White Board Smart Board Lab Sessions		Experiment 14 to 15	CO5
4	Network & Communication Aspects in IoT	Application Protocols: Layered Architecture of IoT Protocols, Communication Technologies, Low range protocols: BLE, ZigBee. Long-range protocols: LoRa and its programming. Wireless sensor networks, Wireless medium access issues, Sensor deployment & Node discovery, Data aggregation & Dissemination.	White Board Smart Board Lab Sessions		Experiment 11 to 13	CO4
3	Programming Arduino and Raspberry Pi	Arduino platform boards anatomy, Arduino IDE coding, using emulator, using libraries, arithmetic addition in Arduino IDE, programming the Arduino for IoT. Programming with Node MCU, Introduction to Raspberry Pi Board. Interfacing and programming the various sensors, IOs, etc. with different platforms	White Board Smart Board Lab Sessions		Experiment 7 to 10	CO3
2	Hardware Components	Sensors, different types of Sensors, Transducer, Actuators, Radio Frequency Identification (RFID) Technology. Overview of IOT supported Hardware Computational platforms such as Arduino, NetArduino, Raspberry Pi, Node MCU, and ARM cortex and its Architecture.	White Board Smart Board Lab Sessions		Experiment 4 to 6	CO2
		and consolidation, Data aggregation & Dissemination, Introduction to Integrated Developed Environments, Tools, and Programming.				

	Textbooks
Sr No	Book Details
1	Michael Miller, "The Internet of Things" Pearson. 1st Edition March 2015
2	Raj Kamal "INTERNET OF THINGS", McGraw-Hill, 2nd Edition, May 2022
3	Jeeva Jose "Internet of Things", Khanna Publications. 1st Edition Jan 2018
	Reference Books
Sr No	Book Details
1	Simon Monk "Programming arduino next steps", 2 nd Edition, Mc Graw-Hill Education 2018
2	Vijay Madisetti and Arshdeep Bahga "Internet of Things (A Hands-on-Approach)", 1stEdition, VPT, 2015.
3	Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, A press Publications, 2013.
	Links
Unit 1	Arduino IDE https://youtu.be/avDJarxPJd0?si=ki52HVuiTI_oajwJ
Unit 2	Blynk App https://youtu.be/DEaDy4ki9E8?si=txSfH rYveA2BYZ9
Unit 3	Thingspeak cloud https://youtu.be/764bRMvGZR4?si=mqOdvZc1epDTacBO

(An Autonomous Institute)
School of Computer Science in Emerging Technologies

Subject Name: Object Oriented Techniques using Java L-T-P [0-0-6]

Subject Code: BCSE0352 Applicable in Department: CSE/IT/AI/AIML/DS/CYS/CS

Pre-requisites of the Subject: 1. Student must know at least the basics of computer skills, and should be able to start a command line shell.

2. Knowledge of basic programming concepts.

Course Objective- The objective of this course is to understand the object-oriented methodology, and its techniques to design stand alone and GUI applications using hands-on engaging activities.

Course Outcomes (CO)

Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level (KL)
CO 1	Understand the concepts of object-oriented programming and relationships among them needed in modeling.	K2
CO2	Demonstrate the Java programs using OOP principles and also implement the concepts of lambda expressions.	К3
CO3	Analyze packages with different protection level resolving namespace collision and implement the error handling concepts for uninterrupted execution of Java program.	K4
CO4	Implement Concurrency control, I/O Streams and Annotations concepts by using Java program.	К3
CO5	Design and develop the GUI based application, Generics and Collections in Java programming language to solve the realworld problem.	K6

No.	Module Name	Topic covered	Pedagogy	Required	Assignment/	CO Mapping
1	Module 1.1:	Introduction and Pillars of OOP with real life example, jvm	T1, R1,		Setting class path	
	Object	architecture and its components	Smart	2 (1 , 2)	variables,	CO 1
Basics	Oriented		Board/PPT/	3 (1+2)	Compilation of	CO 1
of Java	Programming		Online		java file and	

Progra mming			Programs		execute its byte code.	
	Module 1.2: Modelling Concepts	Introduction, Class Diagram and Object Diagram, UML concepts: Association, Composition, aggregation, realization, and Generalization.		3(1+2)	Designing object and class diagram with UML concepts.	
	Module 1.3: Control Statements	Decision Making, Looping and Branching, Argument Passing Mechanism: Command Line Argument, Console Input.		4(1+3)	Implementation of java programs on control statements.	
	Module 1.4: Class and Object	Object Reference, Constructor, Abstraction: Abstract Class, Interface and its uses, Defining Methods, Use of "this" and "super" keyword, Garbage Collection and finalize () Method etc.		8 (2+6)	Implementation of Java Basics, Class, Object, abstract class interface, garbage collection.	
2	Module 2.1: Inheritance	Constructors and super constructor in Inheritance.	T1, R1, Smart Board/PPT/ Online	4 (1+3)	Implementation of inheritance concept.	
OOPs features	Module 2.2: Polymorphis m	Introduction and Types of Polymorphism, Overloading and Overriding	Programs	4 (1+3)	Implementation of polymorphism concept.	CO2
and lambda expressi	Module 2.3: Lambda expression	Introduction and Working with Lambda Variables.		2(1+1)	Programs based on Lambda expression.	CO2
	Module 2.4: Arrays	Introduction to Arrays and its Types.		4(1+3)	Programs based on array concept.	
	Module 3.1: Packages		T1, R1, Smart	3 (1+2)	Implementation of java package,	
s, Exceptio n Handlin	Module 3.2: Exception Handling, Assertions and Localizations	Throw keyword, Multiple Catch Block, Nested Try and Finally	Board/PPT/ Online Programs	5 (2+3)	Exception handling, Assertion, Localization and String handling	CO3

Handlin		String Types, Operations, Immutable String, Method of String class, String Buffer and String Builder class.		5 (2+3)		
4 Concurr ency in Java	Module 4.1: Threads Module 4.2: I/O Stream	Priorities, Daemon Thread, Runnable Class, Synchronizing Threads etc. Common I/O Stream Operations, Interaction with I/O Streams	T2, R2, Smart Board/PPT/ Online Programs	4(2+2) 3(1+2) 3(1+2)	Implementation of Multi-threading, Annotation, Character and Byte Stream classes java.io	CO4
and i/O	Annotations	and oddedon, edition / amotations and Applying / amotations.		3(1:2)	package.	
		Swing, AWT, Components and Containers, Layout Managers and User-Defined Layout and Event Handling.	T2, R2, R3	4(2+2)	Implementation of AWT & Swing	
Progra			Smart 5(1	5(1+4)	—components, Layout Manager —classes, Generic &	CO5
s and Collecti		Introduction to Collections, Using Method References, Using Wrapper Class, Using Lists, Sets, Maps and Queues, Collection using Generics, Iterators	Online Programs	6(2+4)	Collection, and Wrapper classes	
ons	Total				(23T+47P) = 70 Ho	urs

List of Prac	ticals			
Sr. No.	Program Title			
31. 140.	riogiam ritie	Mapping		
1	Understanding Text Editors to Write Programs, Compile and run first java file and Byte Code and class file	CO1		
2	Sketch a class and object diagram by describing the sales order system of a restaurant.	CO1		
3	Sketch a class diagram by describing the circle and rectangle class.	CO1		
4	Sketch a class diagram for a college platform including, classroom, playground, chair, table, smart board, teaching staff etc.	CO1		
5	Sketch a class diagram containing class called Employee, which models an employee with an ID, name and salary. Add method raisesalary(percent) that increases the salary by the given percentage.	CO1		
6	Program to display the default value of all Primitive data types	CO1		

7	Implement the code using main() method to calculate and print the Total and Average Marks scored by a student from the input given through the command line arguments and assume that four command line arguments name , marks1 , marks2 , marks3 will be passed to the main() method in the below class with name TotalAndAvgMarks .	CO1
8	Write code which uses if-then-else statement to check if a given account balance is greater or lesser than the minimum balance. Write a class BalanceCheck with public method checkBalance that takes one parameter balance of type double. Use if-then-else statement and print Balance is low if balance is less than 1000. Otherwise, print Sufficient balance.	CO1
)	A class NumberPalindrome with a public method isNumberPalindrome that takes one parameter number of type int. Write a code to check whether the given number is palindrome or not. For example Cmd Args: 333 333 is a palindrome	CO1
LO	Write a class FibonacciSeries with a main method. The method receives one command line argument. Write a program to display fibonacci series i.e. 0 1 1 2 3 5 8 13 21	CO1
l1	Write a Java Program to find the Factorial of a given number.	CO1
12	Java Program to create a class, methods and invoke them inside main method.	CO1
13	 Write a Java program to illustrate the abstract class concept. Create an abstract class Shape, which contains an empty method numberofSides(). Define three classes named Trapezoid, Triangle and Hexagon extends the class Shape, such that each one of the classes contains only the method numberofSides(), that contains the number of sides in the given geometrical figure. Write a class AbstractExample with the main() method, declare an object to the class Shape, create instances of 	CO1
	each class and call numberofSides() methods of each class.	
L4	Java program to illustrate the static field in the class.	CO1
15	Java Program to illustrate static class.	CO1
16	Write a java program to access the class members using super keyword	CO1
L7	Java program to access the class members using this keyword	CO1
18	Implement an interface named MountainParts that has a constant named TERRAIN that will store the String value "off_road". The interface will define two methods that accept a String argument name newValue and two that will return the current value of an instance field. The methods are to be named: getSuspension, setSuspension, getType, setType.	CO1
19	Java program to demonstrate nested interface inside a interface.	CO1
20	Java program to demonstrate nested interface inside a class.	CO1
21	Java program to explicit implementation of garbage collection by using finalize() method	CO1
		<u> </u>

22	JAVA program to implement Single Inheritance	CO2
23	JAVA program to implement multi-level Inheritance	CO2
24	JAVA program to implement constructor and constructor overloading.	CO2
25	JAVA program implement method overloading.	CO2
26	JAVA program to implement method overriding.	CO2
27	Java program to implement lambda expression without parameter.	CO2
28	Java program to implement lambda expression with single parameter.	CO2
29	Java program to implement lambda expression with multi parameter.	CO2
30	Java program to implement lambda expression that iterate list of objects	CO2
31	Java program to define lambda expressions as method parameters	CO2
32	Write a class CountofTwoNumbers with a public method compareCountof that takes three parameters one is arr of type int[] and other two are arg1 and arg2 are of type int and returns true if count of arg1 is greater than arg2 in arr. The return type of compareCountof should be boolean. Assummptions: • arr is never null • arg1 and arg2 may be same	CO2
33	JAVA program to show the multiplication of two matrices using arrays.	CO2
34	Java Program to search an element using Linear Search	CO2
35	Java program to search an element using Binary Search	CO2
36	Java Program to sort element using Insertion Sort	CO2
37	Java Program to sort element using Selection Sort – Largest element Method	CO2
38	java program to Sort elements using Bubble Sort	CO2
39	Java program to create user defined package.	CO3
40	Java Program to create a sub- classing of package	CO3
41	Implement the following: Import package.*; import package.classname; Using fully qualified name.	CO3

42	Implement and demonstrate package names collision in java	CO3
43	Java program to handle and Arithmetic Exception Divided by zero	CO3
44	Java Program to implement User Defined Exception in Java	CO3
45	Java program to illustrate finally block	CO3
46	Java program to illustrate Multiple catch blocks	CO3
47	Java program for creation of illustrating throw in exception handling.	CO3
48	Implement the concept of Assertion in Java Programming Language	CO3
49	Implement the concept of Localization in Java Programming Language.	CO3
50	Java program to print the output by appending all the capital letters in the input string.	CO3
51	Java program that prints the duplicate characters from the string with its count.	CO3
52	Java program to check if two strings are anagrams of each other	CO3
53	Java Program to count the total number of characters in a string	CO3
54	Java Program to count the total number of punctuation characters exists in a String	CO3
55	Java Program to count the total number of vowels and consonants in a string	CO3
56	Java Program to show .equals method and == in java	CO3
57	Given a string, return a new string made of n copies of the first 2 chars of the original string where n is the length of the string. The string may be any length. If there are fewer than 2 chars, use whatever is there. If input is "Wipped" then output should be "WiWiWiWiWi".	CO3
58	Given two strings, a and b, create a bigger string made of the first char of a, the first char of b, the second char of a, the second char of b, and so on. Any leftover chars go at the end of the result. If the inputs are "Hello" and "World", then the output is "HWeolrllod".	CO3
59	JAVA program to show the usage of string builder.	CO3
60	JAVA program to show the usage of string buffer.	CO3
61	Creating and Running a Thread	CO4
62	Implementing Runnable Interface	CO4
63	Synchronizing Threads with lock	CO4
64	Synchronizing Threads without lock	CO4

65	IANAA waa ayaya ta iyayalayaaytayaa ayal add thyaa da haaysiga Thyaad alaas	1004
65	JAVA program to implement even and odd threads by using Thread class .	CO4
66	JAVA program to implement even and odd threads by using Runnable interface.	CO4
67	JAVA program to synchronize the threads by using Synchronize statements and Synchronize block.	CO4
68	Demonstrate the concept of type annotations in the JAVA programming language.	CO4
69	Demonstrate the concept of user-defined annotations in the JAVA programming language.	CO4
70	JAVA program to implement that read a character stream from input file and print it into output file.	CO4
71	JAVA program to implement that merge the content of two files (file1.txt, file2.txt) into file3.txt.	CO4
72	Write a Java program that reads the contents of one file and copies them to another file.	CO4
73	Write a Java program that reads a text file and counts the number of words in it.	CO4
74	Write a Java program that reads a text file and counts the frequency of each word in it.	CO4
75	Write a Java program that reads a text file and adds line numbers to each line. The program should create a new file with the line numbers added to the beginning of each line.	CO4
76	Write a Java program that reads two binary files and compares them byte by byte to determine if they are identical. Display a message indicating whether the files are the same or different.	CO4
77	Program to create a frame with three button in AWT and swing	CO5
78	Program to display message with radio buttons in swing	CO5
79	Program to display "All The Best" in 5 different colors on screen. (Using AWT/Swing)	CO5
80	Program to implement event handling in a button "OK"	CO5
81	Java Program to implement BorderLayout	CO5
82	Java Program to implement GridLayout	CO5
83	Java Program to implement BoxLayout	CO5
84	Java Program to implement CardLayout	CO5
85	Java program to implement Generic class	CO5
86	Java program to illustrate Generic methods	CO5
87	Java program to implement wildcard in generics	CO5
88	Java program to implement of methods of HashSet	CO5

89	Java Program to implement methods available in HashMap class	CO5
90	Program to add, retrieve, and remove element from ArrayList	CO5
91	Create a method which can accept a collection of country names and add it to ArrayList with generic defined as String and return the List.	CO5
92	Create a method which can create a HashSet containing values 1-10. The Set should be declared with the generic type Integer. The method should return the Set.	CO5
93	Java program to implement autoboxing	CO5
94	Java program to implement unboxing	CO5
95	Develop a java class with a method <i>storeEvenNumbers(int N)</i> using ArrayList to store even numbers from 2 to N, where N is a integer which is passed as a parameter to the method <i>storeEvenNumbers()</i> . The method should return the ArrayList (A1) created.	CO5
96	Create a method that accepts the names of five countries and loads them to an array list and returns the list.	CO5
97	Create a method which can accept a collection of country names and add it to ArrayList with generic defined as String and return the List.	CO5
	Textbooks	
Sr. No.	Book Details	
1	Herbert Schildt," Java: A Beginner's Guide", McGraw-Hill Education 2nd edition	
2	E Balagurusamy, "Programming with Java A Primer", TMH, 4th edition.	
	Reference Books	
Sr. No.	Book Details	
1	Cay S. Horstmann, "Core Java Volume I – Fundamentals", Prentice Hall	
2	Joshua Bloch," Effective Java", Addison Wesley	
3	Herbert Schildt," Java - The Complete Reference", McGraw Hill Education 12th edition	
	Links	
Unit 1	https://www.youtube.com/watch?v=r59xYe3Vyks&list=PLS1QulWo1RlbfTjQvTdj8Y6yyq4R7g-Al	
Unit 2	https://www.youtube.com/watch?v=ZHLdVRXIuC8&list=PLS1QulWo1RIbfTjQvTdj8Y6yyq4R7g-Al&index=18	
Unit 3	https://www.youtube.com/watch?v=hBh_CC5y8-s	

Unit 4	https://www.youtube.com/watch?v=qQVqfvs3p48
Unit 5	https://www.youtube.com/watch?v=2qWPpgALJyw

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute) School of Computer Science in Emerging Technologies

Subject Name: Logic Design and Microcontroller Lab

L-T-P [0-0-2]

Subject Code: BCSIOT0352 Applicable in Department: IoT

Pre-requisite of Subject: Basic Electronics

Course Objective: Students will learn to design combinational and sequential circuits, understand logic systems, and optimize logic circuits. They will study the architecture of the 8085 Microprocessor and ATMEGA 328P microcontroller, including assembly-level programming for both.

Lab Experiments

Course Objective: To design combinational and sequential circuits and verify their outcomes. Students will design and implement programs and complete operations and interfacing using an 8085 microprocessor and ATmega 328P microcontroller.

Course Outcomes (CO)

The state of the s		Bloom's Knowledge Level(KL)
CO 1	Implement and verify combinational and sequential circuits.	К3
CO2	Design programs to perform operations and interfacing using 8085 microprocessor and ATmega328P microcontroller.	К6

List of Practical's

Sr No	Program Title	СО
		Mapping
1	Implementation of XOR and XNOR gates using Universal Gates.	CO1
2	Implementation of 4:1 multiplexer and 1:4 demultiplexer/Decoder using logic gates (AND gate-7408, NOT gate-7404 and OR gate-7432) and verify their truth table.	CO1
3	Implementation of Two Boolean functions using Multiplexer/Encoder and Demultiplexer/Decoder	CO1
4	Implementation of a 4-bit parallel adder using 7483 IC and verify the output for the given inputs. (i) $A = 1011$, $B = 1001$ (ii) $A=0011$, $B=0010$	CO1
5	Verification of truth tables of RS, JK, T, and D flip-flops using (7400) & NOR gates (7402).	CO1
6	Design 4-bit synchronous and asynchronous counter using JK flipflops (7476) and AND gates (7408) and verify their truth table.	CO1
7	Verification of Shift Registers SISO, SIPO, PISO, PIPO using JK flipflops (7476)	CO1
8	Write a program using 8085 Microprocessor for Decimal and hexadecimal addition, and subtraction of the following two Numbers. i. 20 & 33, 57 & 87	CO2

	ii. ABH & 27H, 2AH & C2H	
9	To perform multiplication of the following two 8-bit numbers using 8085. i. 65H & 22H ii. A3H & 35H	CO2
10	To perform the division of i. A 16-bit no by an 8-bit number using 8085. ii. An 8-bit number by an 8-bit number using 8085	CO2
11	Hardware setup for ATmega328P Programming	CO2
12	Software setup, Installation of Microchip Studio	CO2
13	Project Setup, Hardware, and software for ATmega328P Programming using Microchip Studio	CO2
14	Blink Running LED using ATmega 328P	CO2
15	Use Buttons as input using ATmega 328P	CO2
16	Apply external Interrupts in ATmega 328P	CO2
17	Application of serial UART using Atmega 328P	CO2
18	Setup a Timer base using ATmega 328P	CO2
19	Interfacing and control of Servo motor using Timer 1 in Atmega 328P	CO2
20	Interfacing of Temperature Sensor LM 35 with ATmega 328P	CO2

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute) School of Computer Science in Emerging Technologies

Subject Name: IoT Lab using Arduino and Node MCU Platform

Subject Code: BCSIOT0353 Applicable in Department: IoT

Pre-requisite of Subject: Basic Electronics and C programming

Course Objective: This course emphasizes the study of the introduction of IoT technology, Components, architecture, network communications and applications protocols. The course also aims at understanding various hardware for IoT, programming concepts using Arduino and Raspberry Pi, and studying about applications of IoT.

Lab Experiments

Course Objective: To familiarize the students with the basics of the Internet of Things, sensors, development boards, actuators, hardware, and protocols.

Course Outcomes (CO)

Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Describe the functionality of computing, sensing, and actuating components of the Internet of Things.	K2
CO2	Develop IoT applications using Arduino IDE.	K6
CO3	Design, develop, and deploy real-time mini projects of IoT Applications.	К6

List of Practical's

Sr No	Duo quo ma Titale	СО
	Program Title	Mapping
1	Installation of Arduino IDE and introduction to tools, assembly, and libraries.	CO 1
2	Getting Programming board Info and configuring boot loader settings using Arduino IDE.	CO 1
3	Study and design IoT reference architecture for IoT-based applications like Smart home	CO 1
4	Study Hardware Architecture and Pin Out of Arduino UNO Board. Compare Arduino Uno Arduino Nano and Arduino Mega. Identification of their use case according to a given scenario.	CO 1
5	Study Hardware Architecture and Pin Out of Node MCU and ESP8266. Identification of their use case according to the given snapshot.	CO 1
6	a. Study Pin out Architecture of Sensors and actuatorsb. DHT 11 Sensor	CO 1

	c. MQ 135 Sensor	
	d. MQ 7 Sensor	
	e. MQ 3 Sensor	
	f. Ultrasonic Sensor HC-04	
	g. Rain Sensor	
	h. Soil moisture Sensor	
	i. PIR Sensor	
	j. LDR Sensor	
	k. Line Sensor	
	I. Colour Sensor	
	m. Servo Motor	
	n. Relay	
	a. Working with structures using Arduino IDE	CO 2
	b. Working with Variables using Arduino IDE	
	c. Working with Flow control using Arduino IDE	
	d. Working with Digital i/o using Arduino IDE	
	e. Working with Analog i/o using Arduino IDE	
7	f. Working with the Time function using Arduino IDE	
	g. Working with Math functions using Arduino IDE	
	h. Working with Random functions using Arduino IDE	
	i. Working with Serial communication using Arduino IDE	
	j. Working with loops and control statements using Arduino IDE	
	k. Working with PinMode function using Arduino IDE	
	I. Working with analog Read, analog Write, digital Read, digital Write using Arduino IDE, Blinking LED	
	Program using Arduino Uno	
	Write a program using Arduino Uno to generate a random number between 0 to 25. Use 4 LEDs (Red, Green,	CO 2
	Blue, and Yellow) and design LED patterns as	
8	(i) if the random number is less than 5 then only the Red LED should glow.	
	(ii) if the random number is between 5-10 then only Blue LED should glow.	
	(iii)if the random number is between 11-20 then only Yellow LED should glow.	
	(iv) if the random number is greater than 20 then only Green LED should glow."	

	"Write a program using Arduino uno for addition of digits of a user-defined number. Example: number is 257	
	then output should be 14." Write a program to take LED color as input from the user and glow that LED using Arduino Uno.	
9	 a. Interfacing of DHT 11 Sensor with Arduino Uno. Implement an LED mechanism for notifying rise in temperature. b. Interfacing of MQ 135/MQ7 Sensor with Arduino Uno. Implement alarm mechanism for notifying rise in amount of hazardous gases in the air. c. Interfacing of MQ 3 Sensor with Arduino Uno. Implement alarm mechanism for checking amount of alcohol in the air. 	CO 2
10	 a. Interfacing of Ultrasonic Sensor HC-04 with Arduino Uno. b. Interfacing of Rain Sensor with Arduino Uno. Implement a buzzer mechanism as the sensor identifies rain. c. Interfacing of Soil Moisture Sensor with Arduino Uno. d. Interfacing of PIR Sensor with Arduino Uno. e. Interfacing of LDR Sensor with Arduino Uno. f. Interfacing of ICD with Arduino Uno g. Interfacing of I2C LCD with Arduino Uno 	CO 2
11	 a. Interfacing Bluetooth Module with Arduino Uno b. Connecting Node MCU with Wi-Fi hotspots using Arduino IDE c. Interfacing of DHT 11 Sensor with Node MCU d. Interfacing of MQ 135 Sensor with Node MCU e. Interfacing of MQ 7 Sensor with Node MCU f. Interfacing of MQ 3 Sensor with Node MCU 	CO 2
12	 a. Interfacing of Ultrasonic Sensor HC-04 with Node MCU b. Interfacing of Rain Sensor with Node MCU c. Interfacing of Soil moisture Sensor with NodeMCU d. Interfacing of PIR Sensor with Node MCU e. Interfacing of LDR Sensor with Node MCU 	CO 2
13	a. Sending Data to Thingspeak Cloud Server using Node MCUb. Detection of LPG Gas using MQ6 and Node MCU. Notify Thingspeak server that "LPG gas Leakage has been detected".	CO 2
14	Controlling LED with Node MCU using Blynk cloud App.	CO 2
15	Development of Mini Project Sample Projects: Introduction to IoT Projects.xlsx	CO 3

(An Autonomous Institute)
School of Computer Science in Emerging Technologies

Subject Name: Environmental Science L-T-P [2-0-0]

Subject Code: BNC0402 Applicable in Department: All Branches

Pre-requisite of Subject: Environmental science is an interdisciplinary field that requires a solid foundation in various subjects to fully understand the complex interactions within the environment.

Building a strong foundation in subjects like physics, chemistry, biology, maths, geography, economics will equip students with the knowledge and skills necessary to tackle complex environmental challenges and contribute to sustainable solutions.

Course Objective: To help the students in realizing the inter-relationship between man and environment and help the students in acquiring basic knowledge about environment.

Course Outcomes (CO)

Cours	e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Understand the basic principles of ecology and environment. Ecosystem: Basic concepts, components of ecosystem, food chains and food webs. Ecological pyramids	K1,K1
CO2	Understand the different types of natural recourses like food, forest, Minerals and energy and their conservation	K1,K2
CO3	Understand the importance of biodiversity, Threats of biodiversity and different methods of biodiversity conservation.	K1,K2
CO4	Understand the different types of pollution, pollutants, their sources, effects and their control methods.	K1,K2
CO5	Understand the basic concepts of sustainable development, Environmental Impact Assessment (EIA) and different acts related to environment	K1,K2

- 1	Unit No	Module Name	Topic covered	Pedagogy		Practical/ Assignment/ Lab Nos	CO Mapping
	1	Basic Principle of Ecology	Definition, Scope and basic principles of ecology and environment. Ecosystem: Basic concepts, components of ecosystem. Food chains and food webs. Ecological pyramids, Energy flow in ecological systems, Characteristics of different ecosystems. Biogeochemical Cycles: Importance,	Reference Books,	4 L	NA	CO1

		gaseous and sedimentary cycles. Carbon, Nitrogen, Phosphorus and Sulphur Cycles. Basic concepts of sustainable development, SDGs, Ecosystem services, UN Decade for Eco restoration				
2	Natural Resources and Associated Problems	Natural resources and associated problems. Forest resources: Use and over-exploitation, deforestation. Timber extraction, mining, dams and their effects on forest and tribal people. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. Food resources: World food problems, changes caused by agriculture and over-grazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. Land resources: Land as a resource, land degradation, man induced landslides. Equitable use of resources for sustainable lifestyles. Non-Renewable Energy Resources: Fossil fuels and their reserves, Nuclear energy, types, uses and effects, Renewable Energy Resources: hydropower, Solar energy, geothermal, tidal and wind energy, Biomass energy, biogas and its advantages.	Smart board, PPTS, Reference Books,	4 L	NA	CO2
3	Biodiversity Succession and Non-Renewable Energy Resources	conservation strategies Mega diversity zones and Hot spots, concepts, distribution and importance. Succession: Concepts of succession, Types of Succession. Trends in succession. Climax and stability	Smart board, PPTS, Reference Books	4 L	NA	CO3
4	Pollution and Solid Waste Management	Air pollution: sources of air pollution, Primary and secondary air pollutants. Origin and effects of SOX, NOX, Cox,CFC, Hydrocarbon, control of air pollution. Water pollution: sources and types of water pollution, Effects of water pollution,	Smart board, PPTS, Reference Books	4 L	NA	CO4

		Eutrophication, Soil pollution: Causes of soil pollution, Effects of soil pollution, Major sources of and effects of noise pollution on health, Radioactive and thermal pollution sources and their effects on surrounding environment. Solid waste disposal and its effects on surrounding environment, Climate change, global warming, acid rain, ozone layer depletion.				
5	Role of Community and Environmental Protection Acts	Role of community, women and NGOs in environmental protection, Bio indicators and their role, Natural hazards, Chemical accidents and disasters risk management, Environmental Impact Assessment (EIA), Salient features of following Acts: a. Environmental Protection Act, 1986, Wildlife (Protection) Act, 1972.b. Water (Prevention and control of pollution) Act, 1974.c. Air (Prevention and control of pollution) Act, 1981. Forest (Conservation) Act, 1980.d. Wetlands (Conservation and Management) Rules, 2017; e. Chemical safety and Disaster Management law.F. District Environmental Action Plan. Climate action plans.	Smart board, PPTS, Reference Books	4 L	NA	CO5
		Total		20	Hours	
		Textbooks				
Sr No		Book Details				
1	Brady, N.C. 1990. The natur	e and properties of Soils, Tenth Edition. Mac Millar	n Publishing Co	., New York.		
	Botkin, D.B and Kodler E.A.,	2000, Environmental Studies : The earth as a living	g planet. John \	Wiley and Sons	Inc.	
2	2 Environmental studies and Environmental engineering –By Dr. H.H					
3	Environmental Studies By D	r B.S.Chauhan				
		Reference Book	(S			
Sr No		Book Details				

1	Rao M.N. and H.V.N. Rao, 1989: Air Pollution, Tata McGraw Hill Publishing Co. Ltd., New Delhi
2	A Text Book of environmental Science By Shashi Chawla
3	Environmental studies- R, Rajagopalan -Oxford Pubtiotion20051
	Links
Unit 1	Ecosystems and Biomes Classroom Learning Video - YouTube
Unit 2	Environmental Science EVS Unit 3 Natural Resources Land Resources AEC semester 1/2 DU SOL NCWEB P -1 (youtube.com)
Unit 3	'Biodiversity & its Conservation' In Just 24 Minutes 🖒 🖒 Ultimate Revision Series Neet 2022 (youtube.com)
Unit 4	Air Pollution What Causes Air Pollution? The Dr Binocs Show Kids Learning Videos Peekaboo Kidz (youtube.com)
Unit 5	Environmental Pollution - Environment and Ecology for UPSC IAS Part 2 (youtube.com)

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Engineering Mathematics-IV L-T-P [3-1-0]

Subject Code: BAS0402 Applicable in Department: CSE/CS/IT/IOT/ECE/CSE-R/ M.Tech.(Int.)

Pre-requisites of the Subject: Knowledge of Mathematics I and II of B. Tech or equivalent.

Course Objective: The objective of this course is to familiarize the students with statistical techniques. It aims to present the students with standard concepts and tools at an intermediate to superior level that will provide them well towards undertaking a variety of problems in the discipline.

Course Outcomes (CO)

Course outcome: After completion of this course students will be able to:		Bloom's
		Knowledge
		Level (KL)
CO 1	Understand the concept of correlation, moments, skewness and kurtosis and curve fitting.	K1, K2
CO 2	Apply the concept of hypothesis testing and statistical quality control to create control charts.	K1, K3
CO 3	Remember the concept of probability to evaluate probability distributions.	K1
CO 4	Understand the concept of Mathematical Expectations and Probability Distribution.	K2
CO 5	Solve the problems of Time & Work, Pipe & Cistern, Time, Speed & Distance, Boat & Stream, Analogy.	К3

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment / Lab Nos	CO Mapping
1	Statistical Lechniques-L	,	Class room	0.1	A a a i a mana a mata 1	CO1
1			Teaching, Smart Board, PPT, M-	8 L	Assignment 1	CO1

5		Time & Work, Pipe & Cistern, Time, Speed & Distance, Boat & Stream, Sitting arrangement, Analogy.	Class room Teaching, Smart Board, PPT, M- tutor.	8 L	Assignment 5	CO5
4	Probability Distribution	Operation on One Random Variable – Expectations: Introduction, Expected Value of a Random Variable, Mean, Variance, Moment Generating Function, Binomial, Poisson, Normal, Exponential distribution.	Class room Teaching, Smart Board, PPT, M- tutor.	8 L	Assignment 4	CO4
3	Probability and Random Variable	Random Variable: Definition of a Random Variable, Discrete Random Variable, Continuous Random Variable, Probability mass function, Probability Density Function, Distribution functions. Multiple Random Variables: Joint density and distribution Function, Properties of Joint Distribution function, Marginal density Functions, Conditional Distribution and Density, Statistical Independence, Central Limit Theorem (Proof not expected).	Class room Teaching, Smart Board, PPT, M- tutor.	8 L	Assignment 3	CO3
2	Statistical Techniques-II	lines, Fitting of second degree parabola, Exponential curves, Correlation and Rank correlation, Linear regression, nonlinear regression and multiple linear regression Testing a Hypothesis, Null hypothesis, Alternative hypothesis, Level of significance, Confidence limits, Test of significance of difference of means, Z-test, t-test and Chi-square test, F-test, One way ANOVA. Statistical Quality Control (SQC), Control Charts, Control Charts for variables (Mean and Range Charts), Control Charts for Variables (p, np and C charts).	Class room Teaching, Smart Board, PPT, M- tutor.	8 L	Assignment 2	CO2

	Textbooks				
Sr No	Sr No Book Details				
1	P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003(Reprint).				
2	S. Ross: A First Course in Probability, 6th Ed., Pearson Education India, 2002.				
3	W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.				

4	HaitaoGuo, Ramesh A. Gopinath, C.S. Burrus, IVAN W AUTOR SELESNICK, JAN E AUTOR ODEGARD, SidnyBurrus.		
	Reference Books		
Sr No	Book Details		
1	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.		
2	T.Veerarajan : Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi.		
3	R.K. Jain and S.R.K. Iyenger: Advance Engineering Mathematics; Narosa Publishing House, New Delhi.		
4	J.N. Kapur: Mathematical Statistics; S. Chand & Sons Company Limited, New Delhi.		
5	D.N.Elhance, V. Elhance & B.M. Aggarwal: Fundamentals of Statistics; Kitab Mahal Distributers, New Delhi.		
	Links		
Unit 1	https://archive.nptel.ac.in/courses/110/107/110107114/		
Oillt I	https://archive.nptel.ac.in/courses/111/105/111105042/		
Unit 2	https://archive.nptel.ac.in/courses/103/106/103106120/		
Unit 3	https://archive.nptel.ac.in/courses/117/105/117105085/		
Unit 4	https://archive.nptel.ac.in/courses/111/104/111104032/		
	https://www.youtube.com/watch?v=KZ_M5RWaP6A		
Unit 5	https://www.youtube.com/watch?v=WP4jsNRgfa4		
	https://www.youtube.com/watch?v=jPaQDKbahU8		
	https://www.youtube.com/watch?v=FwiWJLicakg		

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Technical Communication	L-T-P [2-1-0]
---------------------------------------	---------------

Subject Code: BASL0401 Applicable in Department: All Branches

Pre-requisite of Subject: B2 (CEFR level) in the Core Skills test; B1/B2 in the Speaking and Writing tests

Course Objective: To develop communication and critical thinking skills necessary for succeeding in the diverse and ever-changing workplace of the twenty first century and help the students communicate effectively, creatively, accurately, and appropriately.

Course Outcomes (CO)

Course out	come: After completion of this course students will be able to:	Bloom's
		Knowledge
		Level(KL)
CO 1	Comprehend the principles and functions of technical communication.	K2
CO2	Write for a specific audience and purpose to fulfil the provided brief.	K5
CO3	Identify and produce different kinds of technical documents.	K2, K3
CO4	Apply effective speaking skills to efficiently carry out official discourses.	K3
CO5	Demonstrate understanding of communication through digital media.	K5

Unit No	Module Name	Topic covered	Pedagogy	Lecture	Practical/ Assignment / Lab Nos	CO Mapping
1 1	Introduction to Technical Communication	,	Interactive & Flipped classroom	6 L	Assignment 1	CO1

		 Need for and Importance of Technical Communication - Significance of audience in technical communication Tone- Formality and Informality 	method			
2	Technical Writing 1	 Technical writing and technical vocabulary Business letters/emails Types and format, Content Organization Cultural Variety, Tone, and Intention Bad news message, good news message Advertisements, Editorial press releases Notices, agenda, and minutes of meeting Job application, CV, and Resume' 	Interactive & Flipped classroom method	10 L	Assignment 2	CO2
3	Technical Writing 2	 Technical reports – types & formats Structure of a report (short & long) Ethical Writing – Copy Editing, Referencing and Plagiarism Technical Proposal - structure and types Technical/ Scientific paper writing 	PPT, Activities	7 L	Assignment 3	CO3
4	Public Speaking	 Components of effective speak Seminar and conference presentation Conducting/ participating in meetings Appearing for a job interview 	Interactive sessions, activities, mock interviews	8 L	Assignment 4	CO4
5	Virtual/Remote Communication	 Understanding remote work – using different online platforms 	Interactive sessions, activities			

 Virtual etiquette- email ids, usernames Developing online written correspondence-blogs, WhatsApp, LinkedIn. What not to write on social media. Participating in online Conferences/seminars/meetings Mobile Etiquette 	8 L	Assignment 5	CO5
Total	39	Hours	

	Textbooks
Sr No	Book Details
1.	Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta Sharma, 4th Edition, Oxford University Press, 2023, New Delhi.
	Reference Books
Sr No	Book Details
1	Technical Communication: A Practical Guide by William S. Pfeiffer and Kaye A. Adkins, Pearson, 2020, UK.
2	The Essentials of Technical Communication by Elizabeth Tebeaux and Sam Dragga, Oxford University Press, 2021, UK.
3	Technical Communication Today by Richard Johnson-Sheehan, Pearson, 2020, UK
4	Strategic Communication in Technical Professions" by Susan K. Miller-Cochran and Jason Tham, Routledge, 2020, UK.
5	Technical Writing for Engineers & Scientists by Michelle V. Z. Holmes, McGraw Hill, 2020, US.
6	Speaking: Second Language Acquisition, from Theory to Practice by William Littlewood, Cambridge University Press, 2022, UK.
7	The Writing Revolution: A Guide to Advancing Thinking Through Writing in All Subjects and Grades by Judith C. Hochman and Natalie Wexler, Jossey-Bass, 2022, USA.

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Data Structure and Algorithms-II L-T-P [3-0-0]

Subject Code: BCSE0401 Applicable in Department: CSE/IT/CS/AI/AIML/IOT/DS/CYS

Pre-requisite of Subject: C, Python

Course Objective: The objective of the course is to learn the basic concepts of algorithm analysis, along with the implementation of non-linear data structures.

Course Outcomes (CO)

Course ou	tcome: After completion of this course students will be able to:	Bloom's Knowledge
		Level(KL)
CO 1	Apply tree structures effectively demonstrating proficiency in tree operations and algorithms.	К3
CO2	Analyse the graph data structure and implement various operations for problem solving.	К4
CO3	Implementation and analysis of dynamic programming for efficient problem-solving across diverse contexts.	K4
CO4	Apply efficient backtracking and branch &bound techniques across diverse problem-solving scenarios.	К3
CO5	Understand advanced data structures, their implementation and application for efficient data manipulation and retrieval.	К2

Cyllobus

		Syliabus				
Unit No	Module	Topics Covered	Pedagogy	Lecture Required L=T+P	Practical/Assi gnment/Lab	CO Mapping
1 Design and Analysis of Algorithms : Trees	Module 1.1: Trees	Trees: Terminology used with Trees, Binary Tree, Memory representation of Tree, Traversal Algorithms: In-order, Pre-order, and post-order. Constructing	Lectures, Code Walkthrough s, hands-on programmin g, Problem	8L+10P		CO1

	Module 1.2: Application of Trees	Traversal, Operation of Insertion, Deletion, Searching & Modification of data in Binary Search tree, Binary Heaps, Threaded Binary trees, Traversing Threaded Binary trees, AVL Tree. Priority Queue, Heap Sort, Huffman codes.	Collaborative Learning, competitive coding Projects, and Assessments.			
Design and Analysis of Algorithms : Graphs	Module 2.1: Graphs Module 2.2: Algorithms on Graphs	Terminology used with Graph, Data Structure for Graph Representations: Adjacency matrices, Adjacency List. Graph Traversal: Depth First Search and Breadth First Search. Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prim's and Kruskal's algorithm. Directed- Acyclic Graph, Transitive Closure and Shortest Path algorithms: Dijkstra Algorithm, Bellman Ford Algorithm, Floyd Warshall's Algorithm.	Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving, Collaborative Learning, competitive coding, Projects, and Assessments.	8L+10P	Depth First Search and Breadth First Search. Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prim's and Kruskal's algorithm. Directed- Acyclic Graph, Transitive Closure, and Shortest Path algorithms: Dijkstra	CO2
3 Dynamic Programm ing	Module 3.1: Dynamic Programming	Dynamic Programming concepts 0/1 Knapsack, Longest Common Sub Sequence, Matrix Chain Multiplication, Resource Allocation Problem.	Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving, Collaborative	8L+8P		CO3

4 Backtracki ng, Branch and Bound 5 Advanced- Data Structures	Module 4.1: Backtracking Module 5.1: Advanced-Data Structures	Backtracking, Branch, and Bound with Examples Such as Travelling Salesman Problem, Graph Colouring, n-Queen Problem, Hamiltonian Cycles, and Sum of Subsets. Red-Black Trees, B – Trees, B+ Trees, Binomial Heaps, Fibonacci Heaps, Tries.	Learning, competitive coding, Projects, and Assessments. Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving, Collaborative Learning, Projects, Assessments. Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving, Collaborative Learning, Projects, Assessments.	8L+10P		CO4
			Assessments.			
	Total No. of Lecture + Prac			(40L+48P) = 8	88 Hours	
6 4:		Textbook				
Sr. No. 1	Michael T. Goodrich, Roberto Ta Wiley Publication, 1st Edition, 20	massia, Michael H. Goldwasser,	C Details "Data Structures	and Algorithms in	Python (An Indian	Adaptation)",
2	Lipschutz, "Data Structures" Sch	aum's Outline Series, Tata McG	raw-hill Educatio	n (India) Pvt. Ltd, 2	2nd Edition, 2017	
3	Thomas H. Coreman, Charles E. I	eiserson and Ronald L. Rivest, "	Introduction to A	Algorithms", Printi	ce Hall of India, 4th	Edition, 2022
		Reference B	ooks			
Sr. No.		Book	Details			
1	Reema Thareja, "Data Structure	Using C", Oxford University Press	, 2 nd Edition, 201	4.		

2	AK Sharma, "Data Structure Using C", Pearson Education India, 2 nd Edition,2011.
3	P. S. Deshpandey, "C and Data structure", Wiley Dreamtech Publication, 1st Edition, 2004.
	Links
Unit 1	https://www.youtube.com/watch?v=tORLeHHtazM&pp=ygUMdHJlZXMgIG5wdGVs
Unit 2	https://www.youtube.com/watch?v=9zpSs845wf8&pp=ygUcZ3JhcGggIGRhdGEgc3RydWN0dXJIICBucHRlbA%3D%3D
Unit 3	https://www.youtube.com/watch?v=5dRGRueKU3M&pp=ygUUZHluYW1pYyBwcm9ncmFtbWluZyA%3D
	https://www.youtube.com/watch?v=DKCbsiDBN6c&list=PL-Y5 GYVx275I87vW3LUzEJ-g7TDgn0Ts
Unit 4	https://www.youtube.com/watch?v=3RBNPc0_Q6g&pp=ygUuYmFja3RyYWNraW5nIGFuZCBicmFuY2ggYW5kIGJvdW5kIHByb2dyY
	W1taW5nIA%3D%3D
Unit 5	https://www.youtube.com/watch?v=8h80p rYv1Y&list=PLv9sD0fPjvSHqIOLTIvHJWjkdH0IdzmXT

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Operating Systems L-T-P [3-0-0]

Subject Code: BCSE0403 Applicable in Department: CSE/IT/CS/AI/AIML/DS/CYS/IOT

Pre-requisite of Subject: Basic knowledge of computer fundamentals, C programming, Data structure and Computer organization.

Course Objective: The objective of this course is to provide an understanding of the basic and modern concepts of operating system and deliver the skills needed to develop and customize Linux shell programming

Course Outcomes (CO)

Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
	Understand various operating systems architecture with utilizing the command line interface (CLI) within a Linux environment.	K2
CO2	Understand and implement the various CPU scheduling algorithms.	K4
CO3	Analyse deadlock, concurrency, and synchronization into the system architecture.	K4
CO4	Identify and implement the memory management techniques and algorithms.	К3
LUS	Analyse file management system and implement distributed and virtual machine configurations on modern operating systems.	К4

Unit No	Module Name	Topic covered	Pedagogy	Required		CO Mapping
1	Operating Systems	Overview of Operating Systems, Operating system architecture, Types of Operating System: Batch OS, Multiprogramming OS, Multitasking OS, Multiprocessor OS, Real time OS, System call and kernel	Lectures, PPTs, Notes and Smart	4L+8P	Experiment/ Program 1.1 to 1.4	CO1

	Module 1.2: Shell Scripting in Linux	Introduction to Linux Operating System, Basic Command Line Interface (CLI) Operations in Linux, Shell Scripting Basics: Variables, Control Structures, Functions				
Process	Module 2.1: Process Management	Process Performance Criteria, Process Transition Diagram, Process Control Block (PCB), Types of Schedulers: Long Term, Mid Term, Short Term Scheduler, CPU Scheduling- Pre-emptive and Non-Pre- emptive Algorithm (FCFS, SJF, SRTF, Non-Pre-emptive Priority, Pre-emptive Priority, Round Robin, Multilevel Queue Scheduling and Multilevel Feedback Queue Scheduling), Processes and Threads, Linux Process Management: ps, top, kill, nice	Lectures, PPTs, Notes and Smart Interactive Panel	8L+ 12P	Experiment/ Program 1.1 to 1.4	CO2
and Deadl	Module 3.1: Concurrency and Deadlock Management	Concurrency: Race Condition, Critical Section, Inter Process Communication, Classical problem: Producer consumer, Dinning Philosopher, Reader writer, Sleeping barber Process Synchronization: Lock variable, Peterson's Solution, Strict alternation, Lamport Bakery Solution, Test and set lock, and semaphore- counting, binary and monitor, Deadlock: Deadlock characterization, Prevention, Deadlock Avoidance: Bankers Algorithms, Deadlock detection, Recovery from Deadlock	Lectures, PPTs, Notes and Smart Interactive Panel	8L+8P	Experiment/ Program 1.1 to 1.4	CO3
Memory	Module 4.1: Memory Management	Memory Management function, Loading and linking Address Binding, Memory management techniques, Contiguous technique- Fixed Partitions, variable partitions, Memory Allocation: Allocation Strategies (First Fit, Best Fit, and Worst Fit), Non-contiguous, Paging, Segmentation, Segmented paging, Virtual Memory	Lectures, PPTs, Notes and Smart Interactive Panel	8L+10P	Experiment/ Program 1.1 to 1.4	CO4

		Concepts, Demand Paging, Performance of Demand Paging, Page Replacement Algorithms: FIFO, LRU, Optimal and LFU, Belady's Anomaly, Thrashing						
	Module 5.1: File Management	File Management: Access Mechanism, File Allocation Method, Free Space Management: -Bit Vector, Linked List,						
	Module 5.2: Modern Operating Sys	Modern Operating System: -Overview of modern operating system, Shared Memory concepts, Distributed system, Parallel system tis architecture, Virtual machines — tem hypervisor, Introduction to GPUs	Lectures, PPTs, Notes and Smart nteractive Panel	4L+10P	Experiment/ Program 1.1 to 1.4	CO5		
		Case Study: Large File Storage in a Distributed Manner						
		Total		(32	L+48P) = 80 Hour	rs		
		Textboo	oks					
Sr No		Book Det	tails					
1	Abraham Silberscha	tz, Peter Baer Galvin and Greg Gagne" Operating S	ystem Concepts Esse	entials", Willey	/ Publication,8 ^{th E}	dition,2017.		
2	Marks G. Sobell "A p	practical guide to Linux: Commands, Editors and Sh	ell Programming", Ci	reateSpace Ind	ependent Publish	ning		
	Platform, 4 th Edition	1,2017.						
3	Jason Cannon "LINU	IX for beginners", 1stEdtion,2014						
		Reference Be	ooks					
Sr. No	No. Book Details							
1	William Stallings "O	perating Systems: Internals and Design Principles",	, Pearson Education ,	9 th Edition, 20	19.			
	Charles Patrick Crowley, "Operating System: A Design-oriented Approach", McGraw Hill Education, 2017,							
2	Charles Patrick Crov	viey, "Operating System: A Design-oriented Approa	Ganesh Naik "Learning Linux Shell Scripting", Packt Publishing ,2 nd Edition 2018.					

Links						
Unit 1	CS162 Lecture 1: What is an Operating System? (youtube.com)					
	Operating System #01 Introduction to OS, its Roles & Types (youtube.com)					
	Operating System #14 What is an Interrupt? Types of Interrupts - YouTube					
	https://www.youtube.com/watch?v=akU1Ji8Vzdk&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ					
	https://www.youtube.com/watch?v=rRGCGZ6OHw8&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ&index=2					
Unit 2	Operating System #03 Programs & Processes, System Calls, OS Structure (youtube.com)					
	Operating System #18 CPU Scheduling: FCFS, SJF, SRTF, Round Robin - YouTube					
	Operating System #19 Priority Scheduling Algorithms, Multilevel Queues - YouTube					
	Operating System #20 Multi Processor Scheduling (youtube.com)					
	Operating System #33 Threads: Thread Model, Thread vs Process, pthread library (youtube.com)					
Unit 3	CS162: Lecture 6: Synchronization 1: Concurrency and Mutual Exclusion (youtube.com)					
	CS162: Lecture 6.5: Concurrency and Mutual Exclusion (Supplemental) (youtube.com)					
	Operating System #04 CPU Sharing, Race Conditions, Synchronization, CPU Scheduling (youtube.com)					
	Operating System #26 Bakery Algorithm - YouTube					
	Operating System #27 Hardware Locks: Spinlock & its Usage (youtube.com)					
Unit 4	Operating System #05 Memory Management: Process, Fragmentation, Deallocation, (youtube.com)					
	Operating System #06 Virtual Memory & Demand Paging in Operating Systems (youtube.com)					
	Operating System #07 MMU Mapping How Virtual Memory Works? - YouTube					
Unit 5	https://www.youtube.com/watch?v=qbQCQ0U6H0o					
	https://www.youtube.com/watch?v=SnKgEuUfV4k					
	https://www.youtube.com/watch?v=cVFyK1f5lDw					
	https://www.youtube.com/watch?v=Z0Vkrn9faoM&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ&index=4					
	https://www.youtube.com/watch?v= BtDcroOTSA					
	https://www.youtube.com/watch?v=_BtDcroOTSA					

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY

GREATER NOIDA-201306

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Mobile Application Development L-T-P [3-0-

0]

Subject Code: BCSIOT0401 Applicable in Department: IoT

Pre-requisite of Subject: Overview of programming language: JAVA and XML

Course Objective: This course introduces students to programming technologies, design and development related to mobile applications using android/ flutter. Course also aims at mobile application development frameworks; mobile architecture, design and engineering issues, techniques, methodologies for mobile application development.

Course Outcomes (CO)

ourse out	come: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Study android architecture, development environment, tools, UI components and multimedia framework.	K1
CO2	Construct basic Android applications using Android Studio, including creating AVDs and managing different Android API levels.	K3
CO3	Implement notifications, SMS handling, and interaction with server-side applications using Google Maps, GPS, and Wi-Fi in mobile applications.	К3
CO4	Analyze and utilize Flutter widgets and layouts to design effective user interfaces and handle state management.	K4
CO5	Create mobile applications incorporating gestures, animations, and database connections using SQLite and Cloud Firestore.	К6

Unit No	Module Name	Topic covered	Pedagogy *Lab Cum Class (LCC)	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Introduction to Mobile	Mobile applications, History of	LCC Mode		Lab	CO 1
	Application and Android	mobile application, types of mobile			Experiments	
	Studio	applications, Introduction to	Smart Board		(1.1-1.4)	

	UI Components	Android, Android ecosystem, Android SDK and Installing and running applications on Android Studio, Creating AVDs, Android API levels (versions & version names), Android Development Tools. Fundamental UI design, layout and view types, Editable and non- editable Text Views, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers, Resources, Activities, Intents, First Interactive UI, Working with Text view Elements, Create and Start Activities		2L+4P	Lab Experiments (1.5-1.8)	
2	Mobile Architecture	Mobile Hardware Architecture, SoC architecture; Mobile Software Architecture, Basic Building blocks – Protocols, Activities, Services, Broadcast Receivers & Content providers, Event Handling – Handling clicks or changes of various UI components.	LCC Mode Smart Board	2L+4P	Lab Experiments (2.1-2.4) Lab Experiments (2.5-2.8)	CO 2
	Database, Testing, Publishing	Introduction to SQLite database, creating and opening a database, creating tables, inserting and retrieving data, Registering Content Providers, using content Providers (insert, delete, retrieve, and update), Testing and debugging Android Applications, Testing and publishing of Mobile Applications.				
3	Android User Interface	Measurements – Device and pixel density independent measuring units Notifications – Creating and Displaying notifications, Displaying	LCC Mode Smart Board	2L+4P	Lab Experiments (3.1-3.4)	CO 3

		Toasts, Handling SMS, Sending SMS.				
	Interfacing Application	Interaction with server-side applications – Using Google Maps, GPS, and Wi-Fi, Integration with social media applications, Interfacing sensor data with mobile applications, accessing applications hosted in a cloud computing environment, Bluetooth, Animation			Lab Experiments (3.5-3.8)	
4	Introduction to Flutter and Dart	Flutter, Features, History, Installation, Architecture of Flutter Applications, Flutter Architecture, Create your first application hello word, introduction to dart, oops, datatype, variables, control flow, functions Stateful vs Stateless Widgets,	LCC Mode Smart Board	2L+4P	Lab Experiments (4.1-4.4) Lab Experiments (4.5-4.8)	CO 4
	UI Components	Container class, Scaffold class, Bottom NavigationBar, ClipRRect Widget, Drawer Widget, ClipRect Widget, Opacity Widget, AppBar Widget Carousel Slider, Staggered Grid View, Circular & Linear Progress Indicators, Alert Dialog, box in Flutter, Dialogs, Icon Class in Flutter, Expanded Class in Flutter, Analog Clock in Flutter, Handling videos, Expansion Tile Card, Tabs, Horizontal List, Working with Charts Convex Bottombar, Slidable.				

5	Animation	Gesture, types of gestures, Events, Animation, start value, end value, adding gesture, animation in flutter, Start value, end value, State Management.	LCC Mode Smart Board	2L+4P	Lab experiments (5.1-5.4) Lab	CO 5
	Database	Database Connection, SQLite, Cloud Firestore, creating android, iOS application, Application testing		ZL+4P	experiments (5.5-5.8)	
		Total		60 Hours		
		Textbooks				
Sr No		Book	Details			
1	Android Studio Flam	Android Studio Flamingo Essentials - Java Edition. (2023)				
2	Clean Architecture fo	or Android. BPB Publications. (2022).				
3	Beginning App Deve	opment with Flutter. Apress, 2019				
		Reference B	ooks			
Sr No			Book Details			
1	Professional Mobile	Application Development. (2012), Scott Gow	vell, Jeff McWherter			
2	Android Application	Development. O'Reilly Media, Incorporated	. (2009) Android Applic	ation Develo	oment. O'Reilly M	ledia,
	Incorporated. (2009)	, Rick Rogers, John Lombardo, Zigurd Medn	iecks, Blake Meike			
3	Flutter for Beginners	s. Packt Publishing Ltd, 2021, Thomas Bailey,	Alessandro Biessek, Tr	evor Wills		
4	4 Flutter. John Wiley & Sons. (2020), Barry Burd					
		Links				
Unit 1	https://archive.npte	el.ac.in/courses/106/106/106106156/				
Unit 2	https://onlinecours	es.swayam2.ac.in/nou21 ge41/preview				
		List of Practical	's			

Sr No	Program Title	
0	Trogram mile	Mapping
1.1	Write Case study on the hardware and software architecture of personal smart phone.	CO1
1.2	Write Case study on Android OS and iOS.	CO1
1.3	Install and configure android studio, android development tools (ADT) plug-in and android virtual device.	CO1
1.4	Develop a basic program to display Hello World on screen.	CO1
1.5	Develop a program of linear layout and absolute layout.	CO1
1.6	Develop a program to implement Text View and Edit Text.	CO1
1.7	Develop a program to implement Auto Complete Text View.	CO1
1.8	Develop a program to implement Custom Toast Alert.	CO1
2.1	Develop a program to show frame, table, and relative layout.	CO 2
2.2	Develop a program to implement button, image button, and toggle button.	CO 2
2.3	Develop an application that uses GUI components, Font and Colours.	CO 2
2.4	Develop a program to implement Radio Button and Radio Group.	CO 2
2.5	Develop a program to implement Progress bar.	CO 2
2.6	Develop a program to implement login window using UI controls.	CO 2
2.7	Design an android application for menu based UI.	CO 2
2.8	Create a login page for student registration.	CO 2
3.1	Develop a program to implement list view, grid, image, and scroll view.	CO 3
3.2	Develop a program to send SMS.	CO 3
3.3	Develop a program to send email.	CO 3
3.4	Develop a program to receive SMS.	CO 3
3.5	Develop a program to receive email.	CO 3
3.6	Develop a program to show animation.	CO 3
3.7	Create a native calculator application.	CO 3

	CO 4 CO 4
	CO 4
	CO 4
e Activity to	CO 4
	CO 4
	CO 4
	CO 4
e entered in	CO 5
and female),	CO 5
rt to change	CO 5
	CO 5
ć	e entered in and female), art to change

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY

GREATER NOIDA-201306

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject	Name: Data Structure and Algorithms -II Lab	L-T-P [0-0-4]
Subject	Code: BCSE0451 Applicable in Department: CSE/IT/CS/AI/AIML,	/IOT/DS/CYS
Pre-req	uisite of Subject: C, Python	
	Lab Experiments	
Course	Objective: Learn to implement non-linear data structures.	
	Course Outcomes (CO)	
Course	Outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO1	Implementation of tree data structures for basic operations like insertion, deletion, searching and traversal	К3
CO2	Implementation of algorithms based on graph data structures for solving real world problems.	К3
CO3	Implementing Dynamic Programming, Backtracking, Branch and Bound algorithms to solve complex data efficiently and effectively.	К3
	List of Practical's	
Sr. No.	Program Title	CO Mapping
1	Write a program to implement an in-order traversal of a binary tree and print the nodes.	CO1
2	Write a program to implement a pre-order traversal of a binary tree and print the nodes.	CO1
3	Write a program to implement a post-order traversal of a binary tree and print the nodes.	CO1
4	Write a program to count number of nodes in a binary tree	CO1
5	Write a program to find the height of the tree	CO1

6	Write a program to check if the Binary tree is balanced or not.	CO1
7	Write a Program to search a number in Binary Search Tree (BST)	CO1
8	Write a program to insert a node in a Binary Search Tree (BST).	CO1
9	Write a program to delete a node from a Binary Search Tree (BST).	CO1
10	Write a program to implement a max-heap and perform heap sort on an array of integers.	CO1
11	Write a Program to implement human coding algorithm	CO1
12	Write a program to implement priority queue using max heap.	CO1
13	Write a program to create a graph using an adjacency matrix.	CO2
14	Write a program to create a graph using an adjacency list.	CO2
15	Write a program to perform Depth-First Search (DFS) on a graph.	CO2
16	Write a program to perform Breadth-First Search (BFS) on a graph.	CO2
17	Write a program to check if there is a path between two nodes in a graph using DFS.	CO2
18	Write a program to find all the vertices reachable from a given vertex in a graph using BFS.	CO2
19	Write a program to detect a cycle in an undirected graph using DFS.	CO2
20	Write a program to detect a cycle in a directed graph using DFS.	CO2
21	Write a program to find the degree of each vertex in an undirected graph.	CO2
22	Write a program to count the number of connected components in an undirected graph.	CO2
23	Write a program to implement Dijkstra Algorithm.	CO2
24	Write a program to implement Prims Algorithm.	CO2
25	Write a program to implement Kruskal Algorithm.	CO2
26	Write a program to implement Floyd Warshall's all pair shortest path algorithm.	CO3
27	Write a program to implement Bellman ford Algorithm.	CO3
28	Write a program to implement Longest common subsequence (LCS).	CO3
29	Write a program to implement sum of subset problem using backtracking.	CO3
30	Write a program to implement insertion and search operations in a Trie.	CO3

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Database Management Systems L-T-P [0-0-6]

Subject Code: BCSE0452 Applicable in Department: CSE/IT/CS/AI/AIML/ IOT/DS/CYS

Pre-requisite of Subject: - It is recommended to have fundamental computer knowledge that includes concepts of computer architecture, storage and hardware. Knowledge of data structures and algorithms and programming will be an added benefit.

Course Objective: - The objective of the course is to introduce about database management systems, with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information in relational & non-relational databases.

Course Outcomes (CO)

Course ou	atcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Understand and Apply ER model for conceptual design of the database.	К3
CO2	Execute SQL and apply the normalization to improve the database design.	К3
CO3	Implement and justify the complex queries in database with different applications.	K5
CO4	Understand and execute the concept of PL/SQL, transaction and concurrency control.	К3
CO5	Evaluate and implement Relational and Non-Relational database on different tools for real-world applications.	K5

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Module 1.1:	Basic Concept: - Introduction of SDLC, Data, Information,	Chalk &			
	Introduction	Database, DBMS, History of Database,	Duster/		F	
Introduction	about the	Database system Vs File system, Data models & Types of Data	Lectures,	8L+8P	Experiment/	CO1
of Database	DBMS	Models	PPTs, Notes	OLTOP	Program 1.1 to 1.8	COI
&		Relational Database term: - Relation, Tuple, Attribute and	and Smart		1.1 (0 1.6	
Conceptual		Domain, Codd Rules	Interactive			

Designing			Panel			
	Design & Implement	Data Modelling using the Entity Relationship Model: ER model concepts, Degree of relationship, Notation for ER diagram, mapping constraints reduction of an ER diagrams to tables. Extended Entity Relationship Diagram & reduction of EER				
	Module 1.3: Introduction on SQL, Implement the DDL, DML, DCL & TCL	Introduction on SQL & Types of SQL commands: -DDL, DML, DCL, TCL				
	Module 1.4: Introduction on Relational Algebra	Basic of Relation Algebra & Operations, Query Optimization				
2	Implementati			71 . 100	Experiment/	CO 2
on	Module 2.2: Implementati on of Data Constraint	Data Constraint: -Null, Not Null, Default and check Constraint	and Smart Interactive Panel	7L+10P	Program 2.1 to 2.11	CO2

	Implementati on of	Use of Aggregate Function Uses of String Functions in SQL Uses of mathematical functions in SQL Uses of Advanced Functions in SQL Use of Clause: Where, Group by, Having and Order by			
		Functional Dependencies, Normalization & Types of Normalization, Candidate Key, Minimal Cover of FD's			
3 Introduction of Complex Queries	-	Operator & Predicates: - Like, Between, Aliases, distinct, limit, Implementation of Logical operator: - And, Or, Not			
	Set Theory Operator		Chalk & Duster/ Lectures, PPTs, Notes and Smart	Experiment/ Program	CO3
	Binary Operator	Binary Operator: - Cartesian Product, Join:-Inner Join: - Natural	Interactive	3.1 to 3.9	
		Nested Query or Sub Query: -IN, NOT IN, Exists, Not Exists, All and Any			

	Module 3.5: Understand& Implementati on the database connectivity	Programming Languages				
Transaction & Concurrenc y control	Implementati on index, Views and Array Module 4.2: Implementati on of PL/SQL Module 4.3: Implementati on of Transition management &	Implementation of PL/SQL Function, Procedure, Trigger, Cursor		6L+8P	Experiment/ Program 4.1 to 4.10	CO4
NoSQL With MongoDB	Understand NoSQL Concept and implement the CURD	Overview of NoSQL Databases With their Types, Uses & Features of NoSQL Document Databases, CAP theorem, BASE Vs ACID Comparison of relational databases to NoSQL stores, uses and databases.	PPTs, Notes	XI+IJP	Experiment/ Program 5.1 to 5.10	CO5

Module 5.2: Implement the MongoDB	Introduction and Features of MongoDB, MongoDB Operators, MongoDB Collection & Document, CRUD operations, MongoDB Shell & their commands,			
Cursor, relation and Aggregation in MongoDB.				
Module 5.3: Understand the concept of cloud database.				
-	Total	(3	36L+48P) = 80 Ho	ours

	Textbooks			
Sr. No.	Book Details			
1	Abraham Silberschatz, Henry F. Korth, and S. Sudarshan," Database Concepts", McGraw Hill ,7th Edition, 2020.			
2	Elmasri, Navathe, "Fundamentals of Database Systems", Addision Wesley ,7th Edition, 2016.			
3	Ivan Bayross, "SQL, PL/SQL – The Programming Language of Oracle", BPB Publication 5 th Edition ,2023.			
4	Dan Sullivan, "NoSQL for Mere Mortals", Addison-Wesley Professional ,1st edition. 2015.			
	Reference Books			
Sr. No.	Book Details			
1	Thomas Cannolly and Carolyn Begg, "Database Systems: A Practical Approach to Design, Implementation and Management", Pearson Education, 3rd Edition, 2007.			
2	Raghu Ramakrishan and Johannes Gehrke "Database Management Systems", McGraw-Hill, 3rdEdition, 2014.			

3	NoSQL and SQL Data Modeling: Bringing Together Data, Semantics, and Software, Ted Hills, 1st Edition, 2016.
4	Brad Dayley "NoSQL with MongoDB in 24 Hours", Sams Publisher, 1st Edition, 2014.
	Links
Unit 1	DBMS L1 Inauguration & Introduction (youtube.com)
	DBMS L2 Introduction to Relational Model (youtube.com)
	DBMS L3 Introduction to SQL (youtube.com) DBMS L8C Entity Relationship Model (youtube.com)
	DBMS L8C Entity Relationship Model (Youtube.com) DBMS L8D Entity Relationship Model (Problem Solving and Discussion) (youtube.com)
Unit 2	DBMS L4A Joins, Set Operations and Aggregate Functions (youtube.com)
Unit 2	DBMS L9A Relational Database Design - YouTube
	DBMS L9B Relational Database Design (youtube.com)
	DBMS L9C Relational Database Design (youtube.com)
	DBMS L9D Discussion on Normalization (youtube.com)
	DBMS L14A Query Optimization (youtube.com)
	Relational Data Model and Notion of Keys - YouTube
	Introduction to Relational Algebra (youtube.com)
	Operators in Relational Model - YouTube
Unit 3	DBMS L4B Joins, Set Operations and Aggregate Functions (youtube.com)
	DBMS L5A Nested Subqueris (youtube.com)
	DBMS L6A Intermediate SQL (youtube.com)
	DBMS L7 Advanced SQL (youtube.com)
	DBMS L12A Indexing and Hashing (youtube.com)
Unit 4	DBMS L15 Transactions - YouTube
	DBMS L16A Concurrency Control - YouTube
	DBMS L16B Concurrency Control (youtube.com)
	DBMS L16C Concurrency Control (youtube.com)
	DBMS L17A Recovery System - YouTube
Unit 5	DBMS L10A Application Design and Development - YouTube
	DBMS L10B Application Design and Development (youtube.com)
	DBMS L19 Distributed Data Stores and NoSQL Databases (youtube.com)
	DBMS L18B Map Reduce and Hadoop - YouTube
	NoSQL Databases #1 (Data Models, CAP Theorem, BASE Property) - YouTube
	https://youtu.be/ekuQjQUnj20?si=_aL4T12EkHBZsvEK

List of Practicals			
Lab No.	Program Logic Building	CO Mapping	
1	Understand and implement the different ER diagram notation with their relationship and Cardinalities.		
2	Creating ER Diagram for company Database. Company database have entities like employee, departments, projects and dependents also implement the relationship and cardinalities between the entities with their relevant attribute.	CO1	
3	Design an ER diagram for a travel agency that includes entities such as travellers, bookings, destinations, and itineraries. also implement the relationship and cardinalities between the entities with their relevant attribute.	CO1	
4	Converting Company & Travel Agency ER Model to Relational Model (Represent entities and relationships in tabular form, represent attributes as columns, identifying keys).	CO1	
5	Each students create at least one ER & EER diagram from real world problem and convert in tabular from with all needed constraint.	CO1	
6	Implement DDL and DML commands	CO1	
7	Implement DCL & TCL commands	CO1	
8	i. Create Database, Rename Database, Delete Database in relational database tool. ii. Create table employee with attributes Emp_no <datatype><size> E_name<datatype><size> JOB <datatype><size> Address <datatype><size> Salary<datatype><size> iii. Insert data into the table iv. Implementation of select command v. Implementation of update command vi. Implementation of alter command vii. Implementation of delete command viii. Implementation of rename command. ix. Implementation of rollback command x. Implementation of commit Command xi. Implementation of Truncate Command xii. Implementation of Drop Command</size></datatype></size></datatype></size></datatype></size></datatype></size></datatype>	CO1	
9	Implementation of I/O Constraint: Primary Key, composite primary key, Foreign Key with on delete set null and on delete set null constraint	CO2	
10	Implementation of constraint: Unique Key and Composite unique key and uses Unique key as foreign key.	CO2	
11	Implementation of Business Constraint: Null, Not Null, Default, Check.	CO2	

12	Implement and apply the different form of normalization approach on company /Travel Agency Database .	CO3
13	Reduction & Implementation in SQL for ER Diagram of Company Database: -	CO2
	i. Create table for EMPLOYEE, DEPARTMET, PROJECT, DEPENDENTS and WORK_ON with all needed keys	
	and other constraints.	
	ii. Populated all table with atleast Ten records in each table as per as applied constraints.	
14	Practicing Queries using Like, Between, Aliases, distinct Operator & Predicate.	CO2
15	Implementation of Aggregate Functions.	CO2
16	Implementation of Scalar, Mathematical and Advanced functions.	CO2
17	Implementation of Queries using Where, Group by, Having and Order by Clause.	CO2
18	Implementation and uses of clause and operators on Company/ Travel Agency or other database. i. Find the name of employee whose name start with A. ii. Find the name of employee where 'hi' in any position. iii. Find the name of employee whose 'r' have in second position. iv. Find the details of employee whose salary is less than 70000. v. Find the name of employee whose name start with V and end with I. vi. Find the average salary of each department vii. Find the max salary of each department viii. Find the sum of salary of department that have more than three employees in ascending order. ix. Find the empid of Employee who work in more than 3 project. x. Find the empid who have more than one dependent. xi. K. Implement the concept of rollback and commit on Employee Table	CO2
19	Create a table EMPLOYEE with following schema:-(Emp_no, E_name, E_address, E_ph_no, Dept_no, Dept_name, Job_id, Designation, Salary) Write SQL statements for the following query. i. List the E_no, E name, Salary of all employees working for MANAGER. ii. Display all the details of the employee whose salary is more than the Sal of any IT PROFF. iii. List the employees in the ascending order of Designations of those joined after 1981. iv. List the employees along with their Experience and Daily Salary. v. List the employees who are either 'CLERK' or 'ANALYST'. vi. List the employees who joined on 1-MAY-81, 3-DEC-81, 17-DEC-81,19-JAN-80. vii. List the employees who are working for the Deptno 10 or 20. viii. List the E-names those are starting with 'S'. ix. Display the name as well as the first five characters of name(s) starting with 'H' x. List all the emps except 'PRESIDENT' & 'MGR" in asc order of Salaries. xi. Display total salary spent for each job category. xii. Display number of employees working in each department and their department name.	

xi	v. Display the details of employees sorting the salary in increasing order.	
X	v. Show the record of employee earning salary greater than 16000 in each department.	
ΧV	i. Add constraints to check, while entering the empno value (i.e) empno > 100.	
xv	ii. Define the field DEPTNO as unique.	
xvi	ii. Create a primary key constraint for the column (EMPNO).	
20 Im	plementation of Queries using set theory operators UNION, INTERSECT, MINUS.	CO3
21 Im	plementation of Queries using Inner Join:- Natural Join , Equi Join & Non Equi Join	CO3
22 Im	plementation of Queries using Outer Join :- Left Outer Join, Right Outer Join and Full Outer Join	CO3
23 Im	plementation of Queries nested Queries or Sub Queries: - IN, NOT IN, Exists, Not Exists, All and Any.	CO3
	oply the set theory operators, join's and nested queries on company database (Case Study-1) rite the SQL Queries for the following statement	
	i. Retrieve the names of employees in department 5 who work more than 10 hours per week on the 'ProductX'project.	
j	ii. List the names of employees who have a dependent with the same first name as themselves.	
ii	ii. Find the names of employees that are directly supervised by 'Franklin Wong'.	
į.	v. For each project, list the project name and the total hours per week (by all employees) spent on that project.	
,	v. Retrieve the names of all employees who work on every project controlled by department 5.	
V	ri. Retrieve the names of all employees who do not work on any project. (f') Retrieve the names of all employees who do not work on every project	
V		602
vi		CO3
	x. Find the names and addresses of all employees who work on at least one project located in Houston but whose department has no location in Houston.	
,	x. List the last names of department managers who have no dependents.	
	ii. Retrieve the names of all employees who work in the department that has the employee with the highest	
x		
xi	,	
xi	· ·	
^1	are making more than 6,00,000	
x		
^	MIN(SAL), AVG(SAL) in this department	
xv		
^\	i. Show the resulting salary for employee working on for project is given a 10/0 faise	

ductions, gross, net, date-of-birth. The calculation of hra, da are as per the rules of the college. Initially only inpo, empname, basic have valid values. Other values are to be computed and updated later. Department ntainsdeptno, deptname, and description columns. Deptno is the primary key in department table and derential integrity constraint exists between employee and department tables. Perform the following erations on the database: i. Create tables department and employee with required constraints. ii. Initially only the few columns (essential) are to be added. Add the remaining columns separately by using appropriate SQL command 3. Basic column should not be null. The default value for date-of-birth is 1 Jan, 1990. When the employees called daily-wagers are to be added the constraint that salary should be greater than or equal to 5000 should be dropped. Display the information of the employees and departments with description of the fields. Display the average salary of all the departments. Display the average salary department wise. 9. Display the maximum salary of each department and also all departments put together. Commit the changes whenever required and rollback if necessary. Find the employees whose salary is between 5000 and 10000 but not exactly 7500. Find the employees whose name contains 'en'. 12. Create alias for columns and use them in queries. 13. List the employees according to ascending order of salary. 14. List the employees who are born on Feb 29. Find the departments where the salary of at-least one employee is more than 20000. Find the departments where the salary of all the employees is less than 20000.	CO3
derstand & implement the Database Connectivity with Java/Python etc. programming language	CO3
Make a list of all project members for projects that involve an employee whose name is SCOTT either as a worker or as a manager of the department that controls the project.	
supervise an employee who works in department 5. To retrieve the SSN of all employee who work as a supervisor not a manager. D To retrieve the SSN of all employee who work as a supervisor and also manage the department.	CO3
The state of the s	eate two tables' employee and department. Employee consists of columns empno, empname, basic, hra, da, ductions, gross, net, date-of-birth. The calculation of hra, da are as per the rules of the college. Initially only pno, empname, basic have valid values. Other values are to be computed and updated later. Department ntainsdeptno, deptname, and description columns. Deptno is the primary key in department table and ferential integrity constraint exists between employee and department tables. Perform the following erations on the database: i. Create tables department and employee with required constraints. i. Initially only the few columns (essential) are to be added. Add the remaining columns separately by using appropriate SQL command 3. Basic column should not be null. i. The default value for date-of-birth is 1 Jan, 1990. ii. When the employees called daily-wagers are to be added the constraint that salary should be greater than or equal to 5000 should be dropped. iii. Display the information of the employees and departments with description of the fields. iii. Display the average salary of all the departments. iii. Display the average salary department wise. 9. Display the maximum salary of each department and also all departments put together. iiii. Commit the changes whenever required and rollback if necessary. iiii the employees whose salary is between 5000 and 10000 but not exactly 7500. iiiii the employees whose name contains 'en'. iiii 12. Create alias for columns and use them in queries. iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

	vi. We want a list of all employee names as well as the name of the departments they manage if they			
	happen to manage a department; if they do not manage one, we can indicate it with a NULL value.			
	vii. Retrieve the names of employees who have no dependents.			
	viii. List the names of all employees with two or more dependents.			
	ix. List the names of managers who have at least one dependent.			
	x. Retrieve the names of all employees who do not have supervisors.			
	xi. Retrieve the name of each employee who has a dependent with the same first name and is the same			
	sex as the employee.			
27	Create Desktop/Web application using the database connectivity.	CO3		
28	Implementation of Array Function	CO4		
29	Implementation of Array Operators	CO4		
30	Implementation of Indexing, Views and sequence	CO4		
31	i. Write a PL/SQL Program t3o Add Two Numbers			
	ii. Write PL/SQL Program for Fibonacci Series	CO4		
	iii. Write PL/SQL Program to Find Greatest of Three Numbers			
32	Write a PI/SQL code block to calculate the area of a circle for a value of radius varying from 3 to 7. Store the			
	radius and the corresponding values of calculated area in an empty table named Areas, consisting of two	CO4		
	columns Radius and Area.			
33	Write a PL/SQL code block that will accept an account number from the user, check if the users balance is less	CO4		
	than the minimum balance, only then deduct Rs.100/- from the balance.			
34	Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations			
	performed on the CUSTOMERS table. This trigger will display the salary difference between the old values and	CO4		
	new values:			
35	Implementation of commit and rollback statement with amount transfer example.	CO4		
36	Implementation array, indexing, transaction concept on Case study 1.			
	i. Implementation of Array Functions & Operators			
	ii. Implementation of Sequence			
	-Creating Sequences -Modifying a Sequence Definition			
	-Removing Sequences			
	iii. Implementation of Views	CO4		
	-Creating Simple and Complex Views			
	-Modifying Views			
	-Removing Views			
	iv. Implementation of Indexes			
	-Manual and Automatic Indexes			

	-Creating Indexes	
	- Removing Indexes	
37	i. Write a PL/SQL block to calculate the incentive of an employee whose ID is 110.	
	ii. Grant and revoke DCL command used on Employee table	
	-GRANT SELECT ON Employee TO emp_name;	
	-Granting multiple privileges on Employee table	
	-Granting all privileges on Employee table;	
	-Granting privilege to a role in Employee table	
	-Granting the WITH GRANT OPTION on Employee table.	
	-Revoke all the permission applied on Employee table.	CO5
	iii. Create the CUSTOMERS table having the following attributes:	203
	- (ID, NAME, AGE, ADDRESS, SALARY)	
	- Insert ten records in customer table.	
	-In Customer table delete those records which have age = 25 and then COMMIT the changes in the database.	
	-In Customer table delete those records which have age = 30 and then Rollback the changes in the database.	
	- Create three savepoint for customer table in that the three deletions have taken place.	
	- Apply the savepoint 2 with rollback on customer table and display the table record.	
	- Apply the SET Transaction command.	
38	Study of Open Source NOSQL Database and installation of MongoDB	CO5
39	Create, drop, rename the database in MongoDB	CO5
40	Implementation the MongoDB Operators.	CO5
41	Implementation the CRUD Operation in MongoDB	CO5
42	Implementation of the MongoDB Shell commands	CO5
43	Implementation of MongoDB Cursor and their methods	CO5
44	Implementation of relation in MongoDB	CO5
45	Implementation of Aggregate in MongoDB	CO5
46	Deployment the data on different tools like HBASE, Riak and Cassandra	CO5
47	Implementation of all CRUD operation, Cursor and aggregate etc. on real world problem.	CO5
	Connect to MongoDB (by using mongo shell)	
	i. Create database with name (ems) - use ems;	
	ii. Create collection with following fields:	
	{"name", age", gender", "exp, subjects, "type"" qualification"},	
	iii. Insert the Ten documents into "faculty" collection (Use insertMany())	
	Write the following queries:	
	i. Get the details of all the faculty.	
	ii. Get the count of all faculty members.	
	iii. Get all the faculty members whose qualification is "Ph.D".	
	iv. Get all the faculty members whose experience is between 8 to 12 years.	

	v. Get all the faculty members who teach "MATHS" or "NETWORKING".		
	vi. Get all the faculty members who teach "MATHS" and whose age is more than 30 years and qualification must be "Ph.D".		
	vii. Get all the faculty members who are working part-time or who teach "JAVA".		
	viii. Add the following new faculty members:		
	{"name":"Ankita ", "age":34,"gender":"F","exp":25, subjects: ["MATHS","DE"],"type":"Full Time", "qualification":"Ph.D"}		
	ix. Update the data of all faculty members by incrementing their age and exp by one year.		
	x. Update the faculty "Sivani" with the following data: update qualification to "Ph.D" and type to "Full Time".		
	xi. Update all faculty members who are teaching "DBMS" such that they should now also teach "Java Programming".		
	xii. Delete all faculty members whose age is more than 55 years.		
	xiii. Get only the name and qualification of all faculty members.		
	xiv. Get the name, qualification and exp of all faculty members and display the same in ascending order of exp.		
	xv. Sort the faculty details by their age (descending order) and get the details of the first five faculty members only.		
48	Implementation of case Study on different domain	CO1, CO2, CO3,	
	1. E-commerce Platform	CO4, CO5	
	2. Inventory Management		
	3. Railway System		
	4. Hospital Data Management		
	5. Voice-based Transport Enquiry System		
	6. SMS-based Remote Server Monitor system		
	7. Banking System		
	8. Al based		
1			

(An Autonomous Institute)
School of Computer Science in Emerging Technology

Subject Name: Technical Communication Lab

L-T-P [0-0-2]

Subject Code: BASL0451 Applicable in Department: CSE/CSE (R)/IT/DS/IoT/AI/AIML/CS/BT/ECE/CYS/ME

Prerequisite of Subject: B2 (CEFR level) in the Core Skills test; B1/B2 in the Speaking and Writing tests

Lab Experiments

Course Objective: To develop communication and critical thinking skills necessary for succeeding in the diverse and ever-changing workplace of the twenty first century and help the students communicate effectively, creatively, accurately, and appropriately.

Course Outcomes (CO)

Course outcome: After completion of this course students will be able to:		Bloom's Knowledge Level(KL)
CO 1	Comprehend the principles and functions of technical communication.	K2
CO2	Write for a specific audience and purpose to fulfil the provided brief.	K5
CO3	Identify and produce different kinds of technical documents.	K2, K3
CO4	Apply effective speaking skills to efficiently carry out official discourses.	К3
CO5	Demonstrate understanding of communication through digital media.	K5

	Lis	t of Practical's	
Lab No.	Topic	Program Logic Building	CO Mapping

1	Case Study Analysis	The students will be able to develop their critical thinking and analytical skills.	CO1
2	Email Role Reversal: Writing and responding to emails in peer groups	The students will practice writing and responding to professional emails.	CO2
3	Infographics – Data Analysis and Interpretation Task	The students will develop their ability to decipher important information from charts, graphs, tables, and diagrams.	CO3
4	Document Redesign Challenge: Redesigning existing technical documents to improve readability	The students will develop their ability to write and edit professional documents.	CO3
5	Abstract Formulation and Referencing	The students will be able to write research papers with proper source citations.	CO3
6	Case Study presentations	The students will improve their analytical skills and by presenting improve their speaking skills.	CO4
7	Presentation on Project Report	The students will develop professional speaking skills.	CO4
8	Ted talk simulation – summarising a Ted Talk	The students improve their ability to condense speeches.	CO4
9 & 10	Mock Interviews	The students will practice and enhance their interview skills.	CO4
11 & 12	Webinar Presentations/Online Interviews	The students will improve their ability to make presentations in professional scenarios and perform well in online interviews.	CO5

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY

GREATER NOIDA-201306

(An Autonomous Institute) School of Computer Science in Emerging Technology

Subject Name: Artificial Intelligence and Cyber Ethics L-T-P [2-0-0]

Subject Code: BNC0301 Applicable in Department: All Branches

Prerequisite of Subject: Basic understanding of computer systems and ethics.

Course Objective: The course aims to foster critical thinking about ethical issues, promote responsible use of technology, and ensure students can identify, analyze, and address ethical dilemmas in Artificial Intelligence and cyber domains.

Course Outcome (CO)

Course Ou	tcome: After completion of this course students will be able to:	Bloom's Knowledge Level (KL)
CO 1	Learn key principles of AI ethics, summarizing ethical considerations and applications in AI development and deployment.	K2
CO2	Apply policies and framework for Fairness in AI and Machine Learning	К3
CO3	Apply privacy and security concepts, risk management and regulatory compliance in the field of AI and Cyber Security.	К3
CO4	Understand the nature of cybercrimes, the principles of intellectual property rights (IPR), and the legal measures necessary to address and prevent these issues.	K2
CO5	Describe the impact of AI in Society, employment and workforce.	K2

Unit No	Module	Topics Covered	Pedagogy	Lecture Required (T=L+P)	Aligned Practical/Assi gnment/Lab	CO Mapping
1	An overview to AI Ethics	Definition of AI. Ethical principles in AI. Sources of AI data. Legal implications of AI security breaches, Privacy and AI regulations. Key Principles of	Lecture and	5 L	Assignment	CO1

	T	T	1	I	<u></u>	
		responsible AI, transparency and accountability, Dual-use dilemma, Humancentric design. Introduction to Cyber Laws and Ethics, Historical development of cyber laws, Legal frameworks.				
2	Fairness and Favoritism in Machine Learning	Introduction to Fairness and Bias in AI, Types of Fairness and Bias. Impact of Bias and Fairness in AI, techniques for measuring Fairness and Bias. Techniques for mitigating bias. Current policies and frameworks for fairness in AI. Bias in data collection, Fairness in data processing. Generative AI, Types of Bias in Generative AI.		6 L	Assignment	CO2
3	AI Ethics and Cybersecurity Principles	Importance of privacy and security in AI, AI specific security tools and software, privacy-preserving machine learning (PPML) and privacy-preserving data mining (PPDM) Ethical considerations in phases of AI development life cycle, Risk management: Risk assessment and incident response Regulatory compliance: GDPR, HIPAA Case studies: Implementation of AI ethics guidelines and best practices in engineering projects, Ethical decision-making processes and tools for engineers working with AI technologies	Lecture and Case studies	8 L	Assignment	CO3

4	Cybercrimes, IPR and Legal Measures	Types of cybercrimes and their impact, Legal measures for cybercrime prevention and prosecution. IPR: Copyrights, trademarks, patents, and trade secrets, Ethical implications of intellectual property, Cyber security and privacy issues	Lecture and Case studies	5 L	Assignment	CO4
5	AI Contribution to Social Evolution	Positive and negative political impacts of AI, Role of AI in social media and communication platforms, AI-generated content and deepfakes, Applications of AI in addressing global challenges, Key technical stakeholders in AI deployment: developers, researchers, policymakers, Technical Impacts on Employment and Workforce: Automation technologies: robotic process automation (RPA), autonomous systems	Lecture and Case studies	6 L	Assignment	CO5
_	Total 30 Hours					
	Text Books					
Sr No		Book Detail	S			

1	Introduction to Information Security and Cyber Laws, Simplified Chinese Edition by Surya Prakash Tripathi, Ritendra Goel, 1 January					
	,2014.					
2	AI ETHICS: Paving the Path for Responsible Machine Learning, Shivanand Kumar, 2014.					
	Reference Books					
Sr No	Book Details					
1	AI ETHICS (The MIT Press Essential Knowledge series), by Mark Coeckelbergh, 2018					
2	Computers, Internet and New Technology Laws by Karnika Seth – by Karnika					
	Links					
Unit 1	https://www.youtube.com/watch?v=VqFqWIqOB1g					
Unit 2	https://www.youtube.com/watch?v=hVJqHgqF59A					
Unit 3	https://www.youtube.com/watch?v=O5RX T4Tg24					
Unit 4	https://www.youtube.com/watch?v=RJZ0pxcZsSQ					
Unit 5	https://www.youtube.com/watch?v=I9FOswjTSGg					